Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach
暂无分享,去创建一个
Wolfgang A. Wall | Michael W. Gee | Alexander Popp | Alexander Seitz | W. Wall | M. W. Gee | A. Popp | A. Seitz
[1] P. Alart,et al. A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .
[2] Peter Wriggers,et al. Frictionless 2D Contact formulations for finite deformations based on the mortar method , 2005 .
[3] Peter Betsch,et al. A mortar method for energy‐momentum conserving schemes in frictionless dynamic contact problems , 2009 .
[4] Tod A. Laursen,et al. A mortar segment-to-segment frictional contact method for large deformations , 2003 .
[5] Zdenek Dostl. Optimal Quadratic Programming Algorithms: With Applications to Variational Inequalities , 2009 .
[6] Barbara Wohlmuth,et al. Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.
[7] C. Bernardi,et al. A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .
[8] Barbara I. Wohlmuth,et al. Dual Quadratic Mortar Finite Element Methods for 3D Finite Deformation Contact , 2012, SIAM J. Sci. Comput..
[9] Ekkehard Ramm,et al. Unilateral non‐linear dynamic contact of thin‐walled structures using a primal‐dual active set strategy , 2007 .
[10] M. Puso,et al. A mortar segment-to-segment contact method for large deformation solid mechanics , 2004 .
[11] Peter Wriggers,et al. Computational Contact Mechanics , 2002 .
[12] Jintai Chung,et al. A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .
[13] T. Laursen. Computational Contact and Impact Mechanics , 2003 .
[14] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[15] Barbara Wohlmuth,et al. An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements , 2012 .
[16] Peter Betsch,et al. Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration , 2011 .
[17] Faker Ben Belgacem,et al. The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.
[18] Michael A. Puso,et al. A 3D mortar method for solid mechanics , 2004 .
[19] Barbara I. Wohlmuth,et al. Higher Order Mortar Finite Element Methods in 3D with Dual Lagrange Multiplier Bases , 2005, Numerische Mathematik.
[20] Barbara I. Wohlmuth,et al. A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..
[21] Barbara Wohlmuth,et al. Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D , 2007 .
[22] Barbara I. Wohlmuth,et al. A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction , 2008, SIAM J. Sci. Comput..
[23] P. W. Christensen,et al. Formulation and comparison of algorithms for frictional contact problems , 1998 .
[24] Wolfgang A. Wall,et al. A dual mortar approach for 3D finite deformation contact with consistent linearization , 2010 .
[25] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[26] Wolfgang A. Wall,et al. Finite deformation frictional mortar contact using a semi‐smooth Newton method with consistent linearization , 2010 .
[27] P. Wriggers,et al. A mortar-based frictional contact formulation for large deformations using Lagrange multipliers , 2009 .
[28] Wolfgang A. Wall,et al. A finite deformation mortar contact formulation using a primal–dual active set strategy , 2009 .
[29] Tod A. Laursen,et al. A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations , 2007 .
[30] Barbara Wohlmuth,et al. A primal–dual active set strategy for non-linear multibody contact problems , 2005 .
[31] Barbara I. Wohlmuth,et al. Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.
[32] Tod A. Laursen,et al. A segment-to-segment mortar contact method for quadratic elements and large deformations , 2008 .
[33] Rolf Krause,et al. Efficient simulation of multi‐body contact problems on complex geometries: A flexible decomposition approach using constrained minimization , 2009 .
[34] M. Bischoff,et al. Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers , 2011 .