In-flight inertia matrix estimation of a gyroless satellite

Knowledge of the inertia parameters is vital to guarantee a correct attitude control of a spacecraft. The relatively low accuracy of their estimate prior to launch, together with possible changes of these quantities, make the in-orbit inertia estimation a problem of great interest. In this work, the estimation of the inertia matrix for a gyroless satellite is considered. An iterative instrumental variable algorithm is proposed that relies on the star tracker measurements. A semi-adaptive filter is designed in order to achieve low variance estimates, by taking care of both sensor noise and torque disturbances. The performance of the proposed algorithm is then analyzed via Monte Carlo simulations, using data generated from a high-fidelity simulator.

[1]  J. R. Trapero,et al.  Recursive Estimation and Time-Series Analysis. An Introduction for the Student and Practitioner, Second edition, Peter C. Young. Springer (2011), 504 pp., Hardcover, $119.00, ISBN: 978-3-642-21980-1 , 2015 .

[2]  Mason A. Peck,et al.  Recursive Inertia Estimation with Semidefinite Programming , 2017 .

[3]  Juan C. Agüero,et al.  Refined instrumental variable parameter estimation of continuous-time Box–Jenkins models from irregularly sampled data , 2017 .

[4]  Kathleen Riesing,et al.  Kalman Filtering for Attitude and Parameter Estimation of Nanosatellites Without Gyroscopes , 2017 .

[5]  Allan Y. Lee,et al.  In-Flight Estimation of the Cassini Spacecraft's Inertia Tensor , 2002 .

[6]  Michel Thoby MYRIADE: CNES Micro-Satellite Program , 2001 .

[7]  Marcel J. Sidi,et al.  Spacecraft Dynamics and Control: A Practical Engineering Approach , 1997 .

[8]  Hugues Garnier,et al.  Direct continuous-time approaches to system identification. Overview and benefits for practical applications , 2015, Eur. J. Control.

[9]  James Diebel,et al.  Representing Attitude : Euler Angles , Unit Quaternions , and Rotation Vectors , 2006 .

[10]  John L. Crassidis,et al.  Survey of nonlinear attitude estimation methods , 2007 .

[11]  Marion Gilson,et al.  Instrumental variable methods for closed-loop system identification , 2005, Autom..

[12]  Dennis S. Bernstein,et al.  Identification of the inertia matrix of a rotating body based on errors‐in‐variables models , 2009 .

[13]  P. Young,et al.  Optimal instrumental variable method for closed-loop identification , 2011 .

[14]  Mark L. Psiaki,et al.  Estimation of a Spacecraft's Attitude Dynamics Parameters by Using Flight Data , 2005 .

[15]  Paul M.J. Van den Hof,et al.  Closed-Loop Issues in System Identification , 1997 .

[16]  Hugues Garnier,et al.  In-Orbit Data Driven Identification of Satellite Inertia Matrix , 2018 .

[17]  Peter C. Young,et al.  An improved instrumental variable method for industrial robot model identification , 2018 .

[18]  Mason A. Peck,et al.  In-Orbit Estimation of Inertia and Momentum-Actuator Alignment Parameters , 2011 .

[19]  M. C. VanDyke,et al.  UNSCENTED KALMAN FILTERING FOR SPACECRAFT ATTITUDE STATE AND PARAMETER ESTIMATION , 2004 .

[20]  T. Söderström,et al.  Instrumental variable methods for system identification , 1983 .

[21]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .