Global observational diagnosis of soil moisture control on the land surface energy balance

An understanding of where and how strongly the surface energy budget is constrained by soil moisture is hindered by a lack of large-scale observations, and this contributes to uncertainty in climate models. Here we present a new approach combining satellite observations of land surface temperature and rainfall.We derive a Relative Warming Rate (RWR) diagnostic, which is a measure of how rapidly the land warms relative to the overlying atmosphere during 10 day dry spells. In our dry spell composites, 73% of the land surface between 60°S and 60°N warms faster than the atmosphere, indicating water-stressed conditions, and increases in sensible heat. Higher RWRs are found for shorter vegetation and bare soil than for tall, deep-rooted vegetation, due to differences in aerodynamic and hydrological properties. We show how the variation of RWR with antecedent rainfall helps to identify different evaporative regimes in the major nonpolar climate zones.

[1]  J. Christensen,et al.  Temperature dependent climate projection deficiencies in CMIP5 models , 2012 .

[2]  Peter Troch,et al.  Observed timescales of evapotranspiration response to soil moisture , 2006 .

[3]  Sonia I. Seneviratne,et al.  Observational evidence for soil-moisture impact on hot extremes in southeastern Europe , 2011 .

[4]  C. Taylor,et al.  Afternoon rain more likely over drier soils , 2012, Nature.

[5]  S. Seneviratne,et al.  Evaluation of global observations‐based evapotranspiration datasets and IPCC AR4 simulations , 2011 .

[6]  Carlos Jimenez,et al.  On Uncertainty in Global Terrestrial Evapotranspiration Estimates from Choice of Input Forcing Datasets , 2015 .

[7]  Pascal Yiou,et al.  Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit , 2007 .

[8]  P. Dirmeyer,et al.  Trends in Land–Atmosphere Interactions from CMIP5 Simulations , 2013 .

[9]  Philippe Ciais,et al.  Future European temperature change uncertainties reduced by using land heat flux observations , 2013 .

[10]  J. Monteith Evaporation and environment. , 1965, Symposia of the Society for Experimental Biology.

[11]  S. Seneviratne,et al.  Investigating soil moisture-climate interactions in a changing climate: A review , 2010 .

[12]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[13]  Pascal Yiou,et al.  Asymmetric European summer heat predictability from wet and dry southern winters and springs , 2012 .

[14]  Christopher M. Taylor,et al.  Large-Scale Surface Responses during European Dry Spells Diagnosed from Land Surface Temperature , 2016 .

[15]  Jean-Charles Dupont,et al.  Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory , 2013, Climate Dynamics.

[16]  Diego G. Miralles,et al.  Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation , 2014 .

[17]  S. Seneviratne,et al.  Contrasting response of European forest and grassland energy exchange to heatwaves , 2010 .

[18]  Kuolin Hsu,et al.  Satellite-Based Precipitation Measurement Using PERSIANN System , 2009 .

[19]  Frédéric Achard,et al.  GLOBCOVER : The most detailed portrait of Earth , 2008 .

[20]  Randal D. Koster,et al.  Do Global Models Properly Represent the Feedback between Land and Atmosphere? , 2006, Journal of Hydrometeorology.

[21]  Isabel F. Trigo,et al.  An assessment of remotely sensed land surface temperature , 2008 .

[22]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[23]  B. Rudolf,et al.  World Map of the Köppen-Geiger climate classification updated , 2006 .

[24]  E. Fischer,et al.  Contribution of land‐atmosphere coupling to recent European summer heat waves , 2007 .

[25]  Jakob Zscheischler,et al.  A submonthly database for detecting changes in vegetation‐atmosphere coupling , 2015 .

[26]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[27]  Taikan Oki,et al.  GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis , 2006, Journal of Hydrometeorology.

[28]  Frédéric Hourdin,et al.  Role of clouds and land‐atmosphere coupling in midlatitude continental summer warm biases and climate change amplification in CMIP5 simulations , 2014 .

[29]  S. Seneviratne,et al.  Hot days induced by precipitation deficits at the global scale , 2012, Proceedings of the National Academy of Sciences.

[30]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[31]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[32]  K. Oleson,et al.  GLACE : The Global Land-Atmosphere Coupling Experiment . 2 . Analysis , 2005 .

[33]  P. Dirmeyer A History and Review of the Global Soil Wetness Project (GSWP) , 2011 .

[34]  C. Kobayashi,et al.  The JRA-55 Reanalysis: General Specifications and Basic Characteristics , 2015 .

[35]  S. Seneviratne,et al.  Systematic land climate and evapotranspiration biases in CMIP5 simulations , 2014, Geophysical research letters.

[36]  R. Haarsma,et al.  Drier Mediterranean soils due to greenhouse warming bring easterly winds over summertime central Europe , 2009 .