L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} Stability of Explicit Runge–Kutta Schemes
暂无分享,去创建一个
[1] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[2] David I. Ketcheson,et al. Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..
[3] Magnus Svärd,et al. Review of summation-by-parts schemes for initial-boundary-value problems , 2013, J. Comput. Phys..
[4] Philipp Öffner,et al. Summation-by-parts operators for correction procedure via reconstruction , 2015, J. Comput. Phys..
[5] J. Butcher. Numerical methods for ordinary differential equations , 2003 .
[6] Antony Jameson,et al. A New Class of High-Order Energy Stable Flux Reconstruction Schemes , 2011, J. Sci. Comput..
[7] Inmaculada Higueras,et al. Monotonicity for Runge–Kutta Methods: Inner Product Norms , 2005, J. Sci. Comput..
[8] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[9] David A. Kopriva,et al. An Assessment of the Efficiency of Nodal Discontinuous Galerkin Spectral Element Methods , 2013 .
[10] Arieh Iserles,et al. A First Course in the Numerical Analysis of Differential Equations: The diffusion equation , 2008 .
[11] Chi-Wang Shu,et al. Stability of the fourth order Runge–Kutta method for time-dependent partial differential equations , 2017 .
[12] D. Whittaker,et al. A Course in Functional Analysis , 1991, The Mathematical Gazette.
[13] Steven Roman. Advanced Linear Algebra , 1992 .
[14] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[15] David C. Del Rey Fernández,et al. Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations , 2014 .
[16] Freddie D. Witherden,et al. An extended range of stable-symmetric-conservative Flux Reconstruction correction functions , 2015 .
[17] Qing Nie,et al. DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia , 2017, Journal of Open Research Software.
[18] Gregor Gassner,et al. An Energy Stable Discontinuous Galerkin Spectral Element Discretization for Variable Coefficient Advection Problems , 2014, SIAM J. Sci. Comput..
[19] Eitan Tadmor,et al. From Semidiscrete to Fully Discrete: Stability of Runge-Kutta Schemes by The Energy Method , 1998, SIAM Rev..
[20] Alan Edelman,et al. Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..
[21] David A. Kopriva,et al. Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers , 2009 .
[22] Chi-Wang Shu,et al. Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..
[23] David I. Ketcheson,et al. Strong stability preserving runge-kutta and multistep time discretizations , 2011 .
[24] G. J. Cooper. Stability of Runge-Kutta Methods for Trajectory Problems , 1987 .
[25] David A. Kopriva,et al. Implementing Spectral Methods for Partial Differential Equations , 2009 .