Mitochondrial transporters as novel targets for intracellular calcium signaling.

Ca(2+) signaling in mitochondria is important to tune mitochondrial function to a variety of extracellular stimuli. The main mechanism is Ca(2+) entry in mitochondria via the Ca(2+) uniporter followed by Ca(2+) activation of three dehydrogenases in the mitochondrial matrix. This results in increases in mitochondrial NADH/NAD ratios and ATP levels and increased substrate uptake by mitochondria. We review evidence gathered more than 20 years ago and recent work indicating that substrate uptake, mitochondrial NADH/NAD ratios, and ATP levels may be also activated in response to cytosolic Ca(2+) signals via a mechanism that does not require the entry of Ca(2+) in mitochondria, a mechanism depending on the activity of Ca(2+)-dependent mitochondrial carriers (CaMC). CaMCs fall into two groups, the aspartate-glutamate carriers (AGC) and the ATP-Mg/P(i) carriers, also named SCaMC (for short CaMC). The two mammalian AGCs, aralar and citrin, are members of the malate-aspartate NADH shuttle, and citrin, the liver AGC, is also a member of the urea cycle. Both types of CaMCs are activated by Ca(2+) in the intermembrane space and function together with the Ca(2+) uniporter in decoding the Ca(2+) signal into a mitochondrial response.

[1]  G. Hajnóczky,et al.  Ca2+ marks: Miniature calcium signals in single mitochondria driven by ryanodine receptors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Omata,et al.  A Novel Mitochondrial Ca2+-dependent Solute Carrier in the Liver Identified by mRNA Differential Display* , 2003, The Journal of Biological Chemistry.

[3]  J. Aprille,et al.  Citrulline synthesis: regulation by alterations in the total mitochondrial adenine nucleotide content. , 1982, Archives of biochemistry and biophysics.

[4]  R. Matalon,et al.  Knock‐out mouse for Canavan disease: a model for gene transfer to the central nervous system , 2000, The journal of gene medicine.

[5]  M. Duarte,et al.  The main external alternative NAD(P)H dehydrogenase of Neurospora crassa mitochondria. , 2004, Biochimica et biophysica acta.

[6]  H. Kasai,et al.  Rapid Ca2+-dependent increase in oxygen consumption by mitochondria in single mammalian central neurons. , 2005, Cell calcium.

[7]  P. Styles,et al.  Developmental and regional distribution of aspartoacylase in rat brain tissue , 2001, Journal of neurochemistry.

[8]  C. Hollenberg,et al.  The glutamate dehydrogenases of yeast: extra-mitochondrial enzymes. , 1970, Biochimica et biophysica acta.

[9]  E. Li,et al.  DNA Methylation Is Required for Silencing of Ant4, an Adenine Nucleotide Translocase Selectively Expressed in Mouse Embryonic Stem Cells and Germ Cells , 2005, Stem cells.

[10]  A. Schoolwerth,et al.  Transport of metabolic substrates in renal mitochondria. , 1985, Annual review of physiology.

[11]  R. Sutton,et al.  The transport and accumulation of adenine nucleotides during mitochondrial biogenesis. , 1980, The Biochemical journal.

[12]  G. Szabadkai,et al.  Stimulus-secretion coupling and mitochondrial metabolism in steroid-secreting cells. , 2001, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[13]  A. Fisher,et al.  Respiration of rat lung mitochondria and the influence of Ca 2+ on substrate utilization. , 1973, Biochemistry.

[14]  J. García-Sancho,et al.  Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion , 2000, Nature Cell Biology.

[15]  G. Rutter,et al.  Integrating cytosolic calcium signals into mitochondrial metabolic responses , 1998, The EMBO journal.

[16]  O. Petersen,et al.  Correlation of NADH and Ca2+ signals in mouse pancreatic acinar cells , 2002, The Journal of physiology.

[17]  S. Novgorodov,et al.  The permeability transition in heart mitochondria is regulated synergistically by ADP and cyclosporin A. , 1992, The Journal of biological chemistry.

[18]  H. Nishitani,et al.  Brain metabolites in the hippocampus-amygdala region and cerebellum in autism: an 1H-MR spectroscopy study , 1999, Neuroradiology.

[19]  G. Agrimi,et al.  Identification of the Mitochondrial Glutamate Transporter , 2002, The Journal of Biological Chemistry.

[20]  T. Hashimoto,et al.  Decrease in mitochondrial levels of adenine nucleotides and concomitant mitochondrial dysfunction in ischemic rat liver. , 1983, Journal of biochemistry.

[21]  D. Sadava,et al.  Development of enzymes of glycerol metabolism in human fetal liver. , 1987, Biology of the neonate.

[22]  M Noble,et al.  Specific Expression of N‐Acetylaspartate in Neurons, Oligodendrocyte‐Type‐2 Astrocyte Progenitors, and Immature Oligodendrocytes In Vitro , 1992, Journal of neurochemistry.

[23]  O. Kann,et al.  Metabotropic receptor-mediated Ca2+ signaling elevates mitochondrial Ca2+ and stimulates oxidative metabolism in hippocampal slice cultures. , 2003, Journal of neurophysiology.

[24]  J. Aprille,et al.  Mitochondrial function after acute alteration of the endogenous insulin-to-glucagon ratio. , 1987, Biochemical and biophysical research communications.

[25]  J. Aprille Perinatal Development of Liver Mitochondrial Function , 1990 .

[26]  J. Satrústegui,et al.  Affinity chromatography purification of mitochondrial inner membrane proteins with calcium transport activity. , 1998, Biochimica et biophysica acta.

[27]  W. Cascio,et al.  Mitochondrial calcium transients in adult rabbit cardiac myocytes: inhibition by ruthenium red and artifacts caused by lysosomal loading of Ca(2+)-indicating fluorophores. , 2000, Biophysical journal.

[28]  K. Lanoue,et al.  Sites of action of glucagon and other Ca2+ mobilizing hormones on the malate aspartate cycle. , 1988, Archives of biochemistry and biophysics.

[29]  J. Aprille,et al.  Regulation of hepatic gluconeogenesis by rapid compartmentation of mitochondrial adenine nucleotides in the newborn rabbit. , 1984, Comparative biochemistry and physiology. B, Comparative biochemistry.

[30]  G. Asimakis,et al.  Postnatal development of rat liver mitochondria: state 3 respiration, adenine nucleotide translocase activity, and the net accumulation of adenine nucleotides. , 1980, Archives of biochemistry and biophysics.

[31]  G. Asimakis,et al.  Mechanism of loss of adenine nucleotides from mitochondria during myocardial ischemia. , 1991, Journal of molecular and cellular cardiology.

[32]  S. Scherer,et al.  The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein , 1999, Nature Genetics.

[33]  T. Saheki,et al.  Analysis of the enzyme abnormality in eight cases of neonatal and infantile citrullinaemia in Japan , 1985, Journal of Inherited Metabolic Disease.

[34]  William C Stanley,et al.  Myocardial substrate metabolism in the normal and failing heart. , 2005, Physiological reviews.

[35]  P. Cobbold,et al.  Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes , 1986, Nature.

[36]  Guido Kroemer,et al.  Mitochondrial control of cell death , 2000, Nature Medicine.

[37]  N. Alpert,et al.  Dehydrogenase regulation of metabolite oxidation and efflux from mitochondria in intact hearts. , 1998, American journal of physiology. Heart and circulatory physiology.

[38]  C. Wollheim,et al.  Mitochondria respond to Ca2+ already in the submicromolar range: correlation with redox state. , 2002, Cell calcium.

[39]  I. Møller A new dawn for plant mitochondrial NAD(P)H dehydrogenases. , 2002, Trends in plant science.

[40]  J. Satrústegui,et al.  New mitochondrial carriers: an overview , 2005, Cellular and Molecular Life Sciences CMLS.

[41]  H. Kröner Ca2+ ions, an allosteric activator of calcium uptake in rat liver mitochondria. , 1986, Archives of biochemistry and biophysics.

[42]  D. Hall,et al.  A biomass energy flow chart for Kenya. , 1993 .

[43]  L. Cornett,et al.  Steady state levels of hepatic α1 and β2‐adrenergic receptors and gene transcripts during development of the male rat , 1991 .

[44]  A. Arco Novel variants of human SCaMC-3, an isoform of the ATP-Mg/Pi mitochondrial carrier, generated by alternative splicing from 3′-flanking transposable elements , 2005 .

[45]  Sabine Martin,et al.  Phospholipase C Binds to the Receptor-like GPR1Protein and Controls Pseudohyphal Differentiation inSaccharomyces cerevisiae * , 1999, The Journal of Biological Chemistry.

[46]  W. Henke,et al.  Cyclosporine A inhibits ATP net uptake of rat kidney mitochondria. , 1992, Biochemical pharmacology.

[47]  David E. Clapham,et al.  The mitochondrial calcium uniporter is a highly selective ion channel , 2004, Nature.

[48]  D. Harris,et al.  Control of mitochondrial ATP synthesis in the heart. , 1991, The Biochemical journal.

[49]  V. Iacobazzi,et al.  The transport of L-cysteinesulfinate in rat liver mitochondria. , 1979, Biochimica et biophysica acta.

[50]  D. Horner,et al.  Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles , 2002, The EMBO journal.

[51]  Fabio Di Lisa,et al.  The mitochondrial permeability transition from in vitro artifact to disease target , 2006, The FEBS journal.

[52]  A. Omu,et al.  Effect of Repeated Doses of Dexamethasone on the Incidence and Severity of Respiratory Distress Syndrome in Multifetal Gestation between 24 and 34 Weeks , 2001, Gynecologic and Obstetric Investigation.

[53]  F. M. Lasorsa,et al.  Identification of the Mitochondrial ATP-Mg/Pi Transporter , 2004, Journal of Biological Chemistry.

[54]  C. Koehler New developments in mitochondrial assembly. , 2004, Annual review of cell and developmental biology.

[55]  C. Koehler,et al.  Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. , 1998, Science.

[56]  D. Bers,et al.  Simultaneous measurements of mitochondrial NADH and Ca(2+) during increased work in intact rat heart trabeculae. , 2002, Biophysical journal.

[57]  C. Wollheim,et al.  Regulation of mitochondrial glycerol-phosphate dehydrogenase by Ca2+ within electropermeabilized insulin-secreting cells (INS-1). , 1992, Biochimica et biophysica acta.

[58]  A. Vercesi,et al.  Ca2+ Induces a Cyclosporin A-Insensitive Permeability Transition Pore in Isolated Potato Tuber Mitochondria Mediated by Reactive Oxygen Species , 2001, Journal of bioenergetics and biomembranes.

[59]  C. Wollheim,et al.  Overexpression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in beta cells. , 1999, The Journal of clinical investigation.

[60]  R. Brinster Studies on the development of mouse embryos in vitro. IV. Interaction of energy sources. , 1964, Journal of reproduction and fertility.

[61]  F. Bygrave,et al.  Rapid Ca2+ influx induced by the action of dibutylhydroquinone and glucagon in the perfused rat liver. , 1997, The Biochemical journal.

[62]  J. Satrústegui,et al.  Characterization of a second member of the subfamily of calcium-binding mitochondrial carriers expressed in human non-excitable tissues. , 2000, The Biochemical journal.

[63]  G. Hajnóczky,et al.  Plasticity of Mitochondrial Calcium Signaling* , 2003, Journal of Biological Chemistry.

[64]  R. Sutton,et al.  The differentiation of animal mitochondria during development , 1980 .

[65]  J. Gulbis,et al.  Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller. , 2006, Molecular cell.

[66]  J. Williamson,et al.  Regulation of glutamate metabolism and interactions with the citric acid cycle in rat heart mitochondria. , 1973, The Journal of biological chemistry.

[67]  E. Pebay-Peyroula,et al.  Nucleotide exchange in mitochondria: insight at a molecular level. , 2004, Current opinion in structural biology.

[68]  M. Lane,et al.  Lactate Regulates Pyruvate Uptake and Metabolism in the PreimplantationMouse Embryo1 , 2000, Biology of reproduction.

[69]  K. Lanoue,et al.  Electrogenic characteristics of the mitochondrial glutamate-aspartate antiporter. , 1974, The Journal of biological chemistry.

[70]  L. Tranebjaerg,et al.  Human deafness dystonia syndrome is caused by a defect in assembly of the DDP1/TIMM8a-TIMM13 complex. , 2002, Human molecular genetics.

[71]  W. Malaisse,et al.  Impairment of Glycerol Phosphate Shuttle in Islets From Rats With Diabetes Induced by Neonatal Streptozocin , 1991, Diabetes.

[72]  F. Palmieri,et al.  Identification and purification of the aspartate/glutamate carrier from bovine heart mitochondria. , 1992, Biochimica et biophysica acta.

[73]  A. Ghrist,et al.  Yeast mitochondrial oxodicarboxylate transporters are important for growth on oleic acid. , 2002, Archives of biochemistry and biophysics.

[74]  T Dierks,et al.  Reaction mechanism of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria. , 1988, Biochimica et biophysica acta.

[75]  T. Scholz,et al.  Thyroid hormone regulation of the NADH shuttles in liver and cardiac mitochondria. , 2000, Journal of molecular and cellular cardiology.

[76]  R. Scaduto Calcium and 2-oxoglutarate-mediated control of aspartate formation by rat heart mitochondria. , 1994, European journal of biochemistry.

[77]  N. Huzel,et al.  Distribution of the ATPase inhibitor proteins of mitochondria in mammalian tissues including fibroblasts from a patient with Luft's disease. , 1992, Biochimica et biophysica acta.

[78]  M. Snyder,et al.  Glucose induces cAMP-independent growth-related changes in stationary-phase cells of Saccharomyces cerevisiae. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[79]  J. Williamson,et al.  Kinetics and regulation of the glutamate-aspartate translocator in rat liver mitochondria. , 1979, The Journal of biological chemistry.

[80]  V. Mootha,et al.  Ca(2+) activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase. , 2000, American journal of physiology. Cell physiology.

[81]  A. Meijer,et al.  Evidence for electrogenic aspartate transport in rat liver mitochondria. , 1974, Archives of biochemistry and biophysics.

[82]  Lawrence M. Lifshitz,et al.  Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. , 1998, Science.

[83]  A Miyawaki,et al.  Beat‐to‐beat oscillations of mitochondrial [Ca2+] in cardiac cells , 2001, The EMBO journal.

[84]  V. Piironen,et al.  Vitamin C in breast milk may reduce the risk of atopy in the infant , 2005, European Journal of Clinical Nutrition.

[85]  A. Vercesi,et al.  Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: correlation with mitochondrial permeability transition. , 1997, Biochimica et biophysica acta.

[86]  D. N. Moysés,et al.  Rotenone-sensitive mitochondrial potential in Phytomonas serpens: electrophoretic Ca(2+) accumulation. , 2004, Biochimica et biophysica acta.

[87]  N. Kneer,et al.  Regulation by calcium of hormonal effects on gluconeogenesis. , 1979, The Journal of biological chemistry.

[88]  F. E. Weber,et al.  Molecular cloning of a peroxisomal Ca2+-dependent member of the mitochondrial carrier superfamily. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[89]  M. Berridge,et al.  Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature reviews. Molecular cell biology.

[90]  P. Yaswen,et al.  Acute postnatal regulation of pyruvate carboxylase activity by compartmentation of mitochondrial adenine nucleotides. , 1981, Biochimica et biophysica acta.

[91]  M. Duchen,et al.  Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. , 1992, The Biochemical journal.

[92]  J. Tu,et al.  Role of NADH Shuttles in Glucose-Induced Insulin Secretion From Fetal β-Cells , 2002 .

[93]  R. Docampo,et al.  Calcium regulation in protozoan parasites. , 2003, Current opinion in microbiology.

[94]  J. Thevelein,et al.  Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. , 2004, Molecular cell.

[95]  A. Vercesi,et al.  Some characteristics of Ca2+ transport in plant mitochondria. , 1985, Biochemical and biophysical research communications.

[96]  R. Moreno-Sánchez Contribution of the translocator of adenine nucleotides and the ATP synthase to the control of oxidative phosphorylation and arsenylation in liver mitochondria. , 1985, The Journal of biological chemistry.

[97]  M. Murphy,et al.  Quantitation and origin of the mitochondrial membrane potential in human cells lacking mitochondrial DNA. , 1999, European journal of biochemistry.

[98]  T. Scholz,et al.  Metabolic adaptation of the hypertrophied heart: role of the malate/aspartate and alpha-glycerophosphate shuttles. , 2000, Journal of molecular and cellular cardiology.

[99]  T Dierks,et al.  Asymmetric orientation of the reconstituted aspartate/glutamate carrier from mitochondria. , 1988, Biochimica et biophysica acta.

[100]  C. Godinot,et al.  Functional F1-ATPase Essential in Maintaining Growth and Membrane Potential of Human Mitochondrial DNA-depleted ρ° Cells* , 1998, The Journal of Biological Chemistry.

[101]  T. Yamashita,et al.  Expression of mitochondrial tricarboxylate carrier TCC mRNA and protein in the rat brain. , 2002, Brain research. Molecular brain research.

[102]  C. Leung,et al.  Expression of Deoxynucleotide Carrier Is Not Associated with the Mitochondrial DNA Depletion Caused by Anti-HIV Dideoxynucleoside Analogs and Mitochondrial dNTP Uptake , 2005, Molecular Pharmacology.

[103]  J. Aprille Net uptake of adenine nucleotides by newborn rat liver mitochondria. , 1981, Archives of biochemistry and biophysics.

[104]  M. Huynen,et al.  A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles , 2004, Molecular microbiology.

[105]  W. Henke,et al.  Ischemia decreases the content of the adenine nucleotide translocator in mitochondria of rat kidney. , 1991, Biochimica et biophysica acta.

[106]  M. Gill,et al.  Confirmation of association between autism and the mitochondrial aspartate/glutamate carrier SLC25A12 gene on chromosome 2q31. , 2005, The American journal of psychiatry.

[107]  T. Dierks,et al.  Probing the active site of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria: carbodiimide-catalyzed acylation of a functional lysine residue. , 1992, Biochimica et biophysica acta.

[108]  Pierre J Magistretti,et al.  Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[109]  J. Satrústegui,et al.  Molecular Cloning of Aralar, a New Member of the Mitochondrial Carrier Superfamily That Binds Calcium and Is Present in Human Muscle and Brain* , 1998, The Journal of Biological Chemistry.

[110]  T. Dierks,et al.  The mitochondrial aspartate/glutamate and ADP/ATP carrier switch from obligate counterexchange to unidirectional transport after modification by SH-reagents. , 1990, Biochimica et biophysica acta.

[111]  R. Ledeen,et al.  N-Acetylaspartate synthase is bimodally expressed in microsomes and mitochondria of brain. , 2004, Brain research. Molecular brain research.

[112]  X. Leverve,et al.  Kinetic analysis of short‐term effects of α‐agonists on gluconeogenesis in isolated rat hepatocytes , 1985, FEBS letters.

[113]  G. Dawson,et al.  Regional brain chemical alterations in young children with autism spectrum disorder , 2003, Neurology.

[114]  Edmund R S Kunji,et al.  The role and structure of mitochondrial carriers , 2004, FEBS letters.

[115]  R. Hansford,et al.  Evidence indicating that the glucagon-induced increase in cytoplasmic free Ca2+ concentration in hepatocytes is mediated by an increase in cyclic AMP concentration. , 1989, European journal of biochemistry.

[116]  J. Pronk,et al.  The Saccharomyces cerevisiae NDE1 andNDE2 Genes Encode Separate Mitochondrial NADH Dehydrogenases Catalyzing the Oxidation of Cytosolic NADH* , 1998, The Journal of Biological Chemistry.

[117]  P. Bernardi,et al.  Mitochondria and reperfusion injury. The role of permeability transition. , 2003, Basic research in cardiology.

[118]  M. Huynen,et al.  Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. , 2002, Molecular microbiology.

[119]  T. Saheki,et al.  Possible clinical and histologic manifestations of adult-onset type II citrullinemia in early infancy. , 2001, The Journal of pediatrics.

[120]  M. J. MacDonald,et al.  Regulation of malate dehydrogenase activity by glutamate, citrate, alpha-ketoglutarate, and multienzyme interaction. , 1988, The Journal of biological chemistry.

[121]  H. Prokisch,et al.  The External Calcium-dependent NADPH Dehydrogenase from Neurospora crassa Mitochondria* , 2001, The Journal of Biological Chemistry.

[122]  M. Owen,et al.  Cis-acting variation in the expression of a high proportion of genes in human brain , 2003, Human Genetics.

[123]  K. Lanoue,et al.  Adenine nucleotide transport during cardiac ischemia. , 1981, The American journal of physiology.

[124]  G. Bray,et al.  A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. , 2005, Diabetes.

[125]  M. Snyder,et al.  Carbon source induces growth of stationary phase yeast cells, independent of carbon source metabolism , 1993, Yeast.

[126]  W. Henke,et al.  Net adenine nucleotide transport in rat kidney mitochondria. , 1993, Archives of biochemistry and biophysics.

[127]  R. Gomis,et al.  Mutation in the calcium-binding domain of the mitochondrial glycerophosphate dehydrogenase gene in a family of diabetic subjects. , 1997, Biochemical and biophysical research communications.

[128]  K. Baker,et al.  Mitochondrial proteins essential for viability mediate protein import into yeast mitochondria , 1991, Nature.

[129]  L. Tranebjaerg,et al.  The calcium-binding aspartate/glutamate carriers, citrin and aralar1, are new substrates for the DDP1/TIMM8a-TIMM13 complex. , 2004, Human molecular genetics.

[130]  S. Kawasaki,et al.  Type II (adult onset) citrullinaemia: clinical pictures and the therapeutic effect of liver transplantation , 2001, Journal of neurology, neurosurgery, and psychiatry.

[131]  A. Azzi,et al.  Penetration of the mitochondrial membrane by glutamate and aspartate. , 1967, Biochemical and biophysical research communications.

[132]  D. Dransfield,et al.  Calcium stimulates ATP-Mg/Pi carrier activity in rat liver mitochondria. , 1990, The Journal of biological chemistry.

[133]  A. Katz,et al.  Mechanism of early "pump" failure of the ischemic heart: possible role of adenosine triphosphate depletion and inorganic phosphate accumulation. , 1977, The American journal of cardiology.

[134]  K. Gunter,et al.  Calcium and mitochondria , 2004, FEBS letters.

[135]  C. Turck,et al.  Presence of a Member of the Mitochondrial Carrier Family in Hydrogenosomes: Conservation of Membrane-Targeting Pathways between Hydrogenosomes and Mitochondria , 2000, Molecular and Cellular Biology.

[136]  K. Davis,et al.  Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. , 2004, The American journal of psychiatry.

[137]  M Crompton,et al.  The mitochondrial permeability transition pore and its role in cell death. , 1999, The Biochemical journal.

[138]  H. Wohlrab Respiration-linked calcium ion uptake by flight muscle mitochondria from the blowfly Sarcophaga bullata. , 1974, Biochemistry.

[139]  Filip Rolland,et al.  Glucose-sensing and -signalling mechanisms in yeast. , 2002, FEMS yeast research.

[140]  L. Brown,et al.  Calcium activation of mitochondrial glycerol phosphate dehydrogenase restudied. , 1996, Archives of biochemistry and biophysics.

[141]  R. Balaban,et al.  Calcium Activation of Heart Mitochondrial Oxidative Phosphorylation , 2001, The Journal of Biological Chemistry.

[142]  R. Rizzuto,et al.  Calcium and mitochondria: mechanisms and functions of a troubled relationship. , 2004, Biochimica et biophysica acta.

[143]  H. Lardy,et al.  Ca2+ stimulation of rat liver mitochondrial glycerophosphate dehydrogenase. , 1981, The Journal of biological chemistry.

[144]  N. Oyama,et al.  Ca2+-dependent activation of the malate-aspartate shuttle by norepinephrine and vasopressin in perfused rat liver. , 1988, Archives of biochemistry and biophysics.

[145]  G. Rutter,et al.  Coupling between cytosolic and mitochondrial calcium oscillations: role in the regulation of hepatic metabolism. , 1998, Biochimica et biophysica acta.

[146]  A. Daday,et al.  Evidence of a calcium-ion-transport system in mitochondria isolated from flight muscle of the developing sheep blowfly Lucilia cuprina. , 1975, The Biochemical journal.

[147]  N. Read,et al.  A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. , 2004, Fungal genetics and biology : FG & B.

[148]  S. Korsmeyer,et al.  Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[149]  P. Pinton,et al.  Recombinant Expression of the Ca2+-sensitive Aspartate/Glutamate Carrier Increases Mitochondrial ATP Production in Agonist-stimulated Chinese Hamster Ovary Cells* , 2003, Journal of Biological Chemistry.

[150]  Jeffrey Robbins,et al.  Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death , 2005, Nature.

[151]  Susumu Nakayama,et al.  Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories , 1992, Journal of Molecular Evolution.

[152]  E. Martegani,et al.  Phospholipase C is required for glucose‐induced calcium influx in budding yeast , 2002, FEBS letters.

[153]  J. Walker,et al.  The human mitochondrial deoxynucleotide carrier and its role in the toxicity of nucleoside antivirals , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[154]  M. Müller,et al.  Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. , 1973, The Journal of biological chemistry.

[155]  G. Borsani,et al.  Cellular expression and alternative splicing of SLC25A23, a member of the mitochondrial Ca2+-dependent solute carrier gene family. , 2005, Gene.

[156]  D. Kerr,et al.  The Newborn of Diabetic Rat. I. Hormonal and Metabolic Changes in the Postnatal Period , 1982, Pediatric Research.

[157]  M. Runswick,et al.  Identification in Saccharomyces cerevisiae of Two Isoforms of a Novel Mitochondrial Transporter for 2-Oxoadipate and 2-Oxoglutarate* , 2001, The Journal of Biological Chemistry.

[158]  E. Lewandowski,et al.  Postnatal expression and activity of the mitochondrial 2-oxoglutarate-malate carrier in intact hearts. , 2000, American journal of physiology. Cell physiology.

[159]  W. Webb,et al.  Neural Activity Triggers Neuronal Oxidative Metabolism Followed by Astrocytic Glycolysis , 2004, Science.

[160]  K. Rapti,et al.  Alterations in the heart mitochondrial proteome in a desmin null heart failure model. , 2005, Journal of molecular and cellular cardiology.

[161]  D. Jacobowitz,et al.  Developmental increase of aspartoacylase in oligodendrocytes parallels CNS myelination. , 2003, Brain research. Developmental brain research.

[162]  K. Hsiao,et al.  Adult-onset type II citrullinemia and idiopathic neonatal hepatitis caused by citrin deficiency: involvement of the aspartate glutamate carrier for urea synthesis and maintenance of the urea cycle. , 2004, Molecular genetics and metabolism.

[163]  F. Bosetti,et al.  Increased state 4 mitochondrial respiration and swelling in early post‐ischemic reperfusion of rat heart , 2004, FEBS letters.

[164]  K. Gunter,et al.  Mitochondrial Calcium Uptake from Physiological-type Pulses of Calcium , 1995, The Journal of Biological Chemistry.

[165]  A. Schoolwerth,et al.  Control of ammoniagenesis by alpha-ketoglutarate in rat kidney mitochondria. , 1983, The American journal of physiology.

[166]  David A Harris,et al.  Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion. , 2005, The Biochemical journal.

[167]  M. Madesh,et al.  tcBid promotes Ca2+ signal propagation to the mitochondria: control of Ca2+ permeation through the outer mitochondrial membrane , 2002, The EMBO journal.

[168]  I. Repa,et al.  Hexose phosphorylation and the putative calcium channel component Mid1p are required for the hexose‐induced transient elevation of cytosolic calcium response in Saccharomyces cerevisiae , 2002, Molecular microbiology.

[169]  G. Azzone,et al.  Phenylarsine oxide induces the cyclosporin A-sensitive membrane permeability transition in rat liver mitochondria , 1991, Journal of bioenergetics and biomembranes.

[170]  N. Pfanner,et al.  Mitochondrial import and the twin-pore translocase , 2004, Nature Reviews Molecular Cell Biology.

[171]  R. Jennings,et al.  Structural and functional abnormalities in mitochondria isolated from ischemic dog myocardium. , 1969, Laboratory investigation; a journal of technical methods and pathology.

[172]  J. Rulfs,et al.  Adenine nucleotide pool size, adenine nucleotide translocase activity, and respiratory activity in newborn rabbit liver mitochondria. , 1982, Biochimica et biophysica acta.

[173]  X. Leverve,et al.  The malate/aspartate shuttle and pyruvate kinase as targets involved in the stimulation of gluconeogenesis by phenylephrine. , 1986, European journal of biochemistry.

[174]  G. Salama,et al.  Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts. , 1993, The American journal of physiology.

[175]  T. Pozzan,et al.  New light on mitochondrial calcium , 1998, BioFactors.

[176]  W. Oppliger,et al.  The Tim9p–Tim10p complex binds to the transmembrane domains of the ADP/ATP carrier , 2002, The EMBO journal.

[177]  Bradford W. Gibson,et al.  Characterization of the human heart mitochondrial proteome , 2003, Nature Biotechnology.

[178]  A. Adamson,et al.  Mitochondrial transporters involved in oleic acid utilization and glutamate metabolism in yeast. , 2005, Archives of biochemistry and biophysics.

[179]  R. Haynes,et al.  Elevated intramitochondrial adenine nucleotides and mitochondrial function. , 1983, Archives of biochemistry and biophysics.

[180]  O. Wieland,et al.  Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate. , 1977, The Biochemical journal.

[181]  M. Hubbard,et al.  Mitochondrial ATP synthase F1‐β‐subunit is a calcium‐binding protein , 1996 .

[182]  T. Scholz,et al.  Reducing Equivalent Shuttles in Developing Porcine Myocardium: Enhanced Capacity in the Newborn Heart , 1995, Pediatric Research.

[183]  J. Mazat,et al.  Mitochondria Are Excitable Organelles Capable of Generating and Conveying Electrical and Calcium Signals , 1997, Cell.

[184]  D. Dransfield,et al.  The influence of hypoxia and anoxia on distribution of adenine nucleotides in isolated hepatocytes. , 1994, Archives of biochemistry and biophysics.

[185]  M. Ohta,et al.  Effects of calmodulin antagonists on hydrogen-translocating shuttles in perfused rat liver. , 1991, The American journal of physiology.

[186]  P. Maechler Mitochondria as the conductor of metabolic signals for insulin exocytosis in pancreatic β-cells , 2002, Cellular and Molecular Life Sciences CMLS.

[187]  N. Nelson,et al.  ADP/ATP translocator is essential only for anaerobic growth of yeast Saccharomyces cerevisiae , 1991, FEBS letters.

[188]  M. Huizing,et al.  Human Mitochondrial Transmembrane Metabolite Carriers: Tissue Distribution and Its Implication for Mitochondrial Disorders , 1998, Journal of bioenergetics and biomembranes.

[189]  William Rouslin,et al.  Effects of oligomycin and acidosis on rates of ATP depletion in ischemic heart muscle. , 1986, The American journal of physiology.

[190]  A. Rasmusson,et al.  NAD(P)H-ubiquinone oxidoreductases in plant mitochondria , 1993, Journal of bioenergetics and biomembranes.

[191]  A. Rasmusson,et al.  Effect of calcium ions and inhibitors on internal NAD(P)H dehydrogenases in plant mitochondria. , 1991, European journal of biochemistry.

[192]  Tetsuya Watanabe,et al.  Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death , 2005, Nature.

[193]  Geneviève Dupont,et al.  Calcium wave pacemakers in eggs , 2002, Journal of Cell Science.

[194]  P. Ray,et al.  Paths of carbon in gluconeogenesis and lipogenesis. IV. Inhibition by L-tryptophan of hepatic gluconeogenesis at the level of phosphoenolpyruvate formation. , 1966, The Journal of biological chemistry.

[195]  A. Melo,et al.  Primary structure and characterisation of a 64 kDa NADH dehydrogenase from the inner membrane of Neurospora crassa mitochondria. , 1999, Biochimica et biophysica acta.

[196]  Michael Freitag,et al.  Lessons from the Genome Sequence of Neurospora crassa: Tracing the Path from Genomic Blueprint to Multicellular Organism , 2004, Microbiology and Molecular Biology Reviews.

[197]  J. M. Izquierdo,et al.  Translational regulation of mitochondrial differentiation in neonatal rat liver. Specific increase in the translational efficiency of the nuclear-encoded mitochondrial beta-F1-ATPase mRNA. , 1993, The Journal of biological chemistry.

[198]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[199]  Dean P. Jones,et al.  The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore , 2004, Nature.

[200]  J. Ballesta,et al.  Disruption of six Saccharomyces cerevisiae novel genes and phenotypic analysis of the deletants , 1999, Yeast.

[201]  M. Runswick,et al.  The mitochondrial transport protein superfamily , 1993, Journal of bioenergetics and biomembranes.

[202]  J. Girard,et al.  Factors Affecting the Secretion of Insulin and Glucagon by the Rat Fetus , 1974, Diabetes.

[203]  J. Aprille,et al.  Carboxyatractyloside-insensitive influx and efflux of adenine nucleotides in rat liver mitochondria. , 1984, The Journal of biological chemistry.

[204]  J. Altin,et al.  Synergistic stimulation of Ca2+ uptake by glucagon and Ca2+-mobilizing hormones in the perfused rat liver. A role for mitochondria in long-term Ca2+ homoeostasis. , 1986, The Biochemical journal.

[205]  B. Herman,et al.  Mitochondrial free calcium transients during excitation‐contraction coupling in rabbit cardiac myocytes , 1996, FEBS letters.

[206]  S. Moran,et al.  Sequence of rat mitochondrial glycerol-3-phosphate dehydrogenase cDNA. Evidence for EF-hand calcium-binding domains. , 1994, The Journal of biological chemistry.

[207]  S. Budd,et al.  Mitochondria and neuronal survival. , 2000, Physiological reviews.

[208]  N. Alpert,et al.  Subcellular metabolite transport and carbon isotope kinetics in the intramyocardial glutamate pool. , 1996, Biochemistry.

[209]  T. Pozzan,et al.  Stable Interactions between Mitochondria and Endoplasmic Reticulum Allow Rapid Accumulation of Calcium in a Subpopulation of Mitochondria* , 2003, Journal of Biological Chemistry.

[210]  Pierre J. Magistretti,et al.  Let There Be (NADH) Light , 2004, Science.

[211]  R. Hansford Some properties of mitochondria isolated from the flight muscle of the periodical cicada, Magicicada septendecim. , 1971, The Biochemical journal.

[212]  V. Mootha,et al.  Ca2+ activation of heart mitochondrial oxidative phosphorylation: role of the F0/F1-ATPase , 2000 .

[213]  M. Duchen Mitochondria in health and disease: perspectives on a new mitochondrial biology. , 2004, Molecular aspects of medicine.

[214]  S. Javadov,et al.  Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. , 2004, Cardiovascular research.

[215]  A. del Arco Novel variants of human SCaMC-3, an isoform of the ATP-Mg/P(i) mitochondrial carrier, generated by alternative splicing from 3'-flanking transposable elements. , 2005, Biochemical Journal.

[216]  G. Isenberg,et al.  Changes in mitochondrial calcium concentration during the cardiac contraction cycle. , 1993, Cardiovascular research.

[217]  E. Carafoli Historical review: mitochondria and calcium: ups and downs of an unusual relationship. , 2003, Trends in biochemical sciences.

[218]  H. Spurgeon,et al.  Intramitochondrial free calcium in cardiac myocytes in relation to dehydrogenase activation. , 1993, Cardiovascular research.

[219]  Alejandro A. Schäffer,et al.  Mutant deoxynucleotide carrier is associated with congenital microcephaly , 2002, Nature Genetics.

[220]  J. Connor,et al.  NAD(P)H Fluorescence Imaging of Postsynaptic Neuronal Activation in Murine Hippocampal Slices , 2003, The Journal of Neuroscience.

[221]  X. J. Chen,et al.  Dual mutations reveal interactions between components of oxidative phosphorylation in Kluyveromyces lactis. , 2001, Genetics.

[222]  J. Satrústegui,et al.  The calcium-dependent ATP-Mg/Pi mitochondrial carrier is a target of glucose-induced calcium signalling in Saccharomyces cerevisiae. , 2005, The Biochemical journal.

[223]  R. Hansford,et al.  The effect of Ca2+ on the oxidation of glycerol phosphate by blowfly flight-muscle mitochondria. , 1967, Biochemical and biophysical research communications.

[224]  A. Halestrap,et al.  Oxidative Stress, Thiol Reagents, and Membrane Potential Modulate the Mitochondrial Permeability Transition by Affecting Nucleotide Binding to the Adenine Nucleotide Translocase* , 1997, The Journal of Biological Chemistry.

[225]  F. Yatsu,et al.  ACETATE METABOLISM IN THE NERVOUS SYSTEM. N‐ACETYL‐l‐ASPARTIC ACID AND THE BIOSYNTHESIS OF BRAIN LIPIDS * , 1966, Journal of neurochemistry.

[226]  D. Green,et al.  Apoptotic Pathways: Ten Minutes to Dead , 2005, Cell.

[227]  J. Satrústegui,et al.  Identification of a Novel Human Subfamily of Mitochondrial Carriers with Calcium-binding Domains* , 2004, Journal of Biological Chemistry.

[228]  T. Saheki,et al.  Infantile cholestatic jaundice associated with adult-onset type II citrullinemia. , 2001, The Journal of pediatrics.

[229]  Jeffrey R. Miller,et al.  Non-traditional roles for the Adenomatous Polyposis Coli (APC) tumor suppressor protein. , 2005, Gene.

[230]  Angel Nadal,et al.  Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets , 1991, Pflügers Archiv.

[231]  G. Hajnóczky,et al.  Old players in a new role: mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. , 2002, Cell calcium.

[232]  T. Saheki,et al.  Metabolic derangements in deficiency of citrin, a liver-type mitochondrial aspartate-glutamate carrier. , 2005, Hepatology research : the official journal of the Japan Society of Hepatology.

[233]  P. Bradshaw,et al.  Ca2+ transport in mitochondria from yeast expressing recombinant aequorin. , 2004, Analytical biochemistry.

[234]  C. Clark,et al.  The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica , 1999, Molecular microbiology.

[235]  L. Philipson,et al.  Dependence on NADH produced during glycolysis for beta-cell glucose signaling. , 1994, The Journal of biological chemistry.

[236]  A. Órfão,et al.  cAMP and Ca2+ involvement in the mitochondrial response of cultured fetal rat hepatocytes to adrenaline. , 1997, Experimental cell research.

[237]  J. Samuelson,et al.  Hsp60 Is Targeted to a Cryptic Mitochondrion-Derived Organelle (“Crypton”) in the Microaerophilic Protozoan Parasite Entamoeba histolytica , 1999, Molecular and Cellular Biology.

[238]  M. Zoratti,et al.  The mitochondrial permeability transition. , 1995, Biochimica et biophysica acta.

[239]  J. Zwischenberger,et al.  Intermittent ischemia produces a cumulative depletion of mitochondrial adenine nucleotides in the isolated perfused rat heart. , 1990, Circulation research.

[240]  P. Magistretti,et al.  Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[241]  D. Nash,et al.  Properties of substantially chlorophyll-free pea leaf mitochondria prepared by sucrose density gradient separation. , 1983, Plant physiology.

[242]  J. Aprille,et al.  Regulation of the mitochondrial adenine nucleotide pool size. , 1981, Archives of biochemistry and biophysics.

[243]  K. Gunter,et al.  Transport of calcium by mitochondria , 1994, Journal of bioenergetics and biomembranes.

[244]  H. Kasai,et al.  Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. , 1999, Science.

[245]  E. Carafoli,et al.  A historical review of cellular calcium handling, with emphasis on mitochondria , 2005, Biochemistry (Moscow).

[246]  Eva Pebay-Peyroula,et al.  Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside , 2003, Nature.

[247]  B. Rønnow,et al.  GUT2, a gene for mitochondrial glycerol 3‐phosphate dehydrogenase of Saccharomyces cerevisiae , 1993, Yeast.

[248]  P. V. Blair,et al.  Effect of adenine nucleotide pool size in mitochondria on intramitochondrial ATP levels. , 1999, Biochimica et biophysica acta.

[249]  C. N. Madhavarao,et al.  Characterization of the N‐acetylaspartate biosynthetic enzyme from rat brain , 2003, Journal of neurochemistry.

[250]  M. Berridge,et al.  The versatility and universality of calcium signalling , 2000, Nature Reviews Molecular Cell Biology.

[251]  Ontogeny of malate-aspartate shuttle capacity and gene expression in cardiac mitochondria. , 1998, The American journal of physiology.

[252]  E. Martegani,et al.  Evidence for inositol triphosphate as a second messenger for glucose-induced calcium signalling in budding yeast , 2004, Current Genetics.

[253]  T. Saheki,et al.  Neonatal presentation of adult-onset type II citrullinemia , 2001, Human Genetics.

[254]  M. Ashby,et al.  Perinuclear, perigranular and sub‐plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport , 2001, The EMBO journal.

[255]  I. Møller PLANT MITOCHONDRIA AND OXIDATIVE STRESS: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species. , 2001, Annual review of plant physiology and plant molecular biology.

[256]  S. Vatner,et al.  Limited transfer of cytosolic NADH into mitochondria at high cardiac workload. , 2004, American journal of physiology. Heart and circulatory physiology.

[257]  P. Bernardi,et al.  Erratum , 2006 .

[258]  J. Modica-Napolitano,et al.  Permeability transition in rat liver mitochondria is modulated by the ATP-Mg/Pi carrier. , 2003, American journal of physiology. Gastrointestinal and liver physiology.

[259]  Graeme Wistow,et al.  Expressed sequence tag analysis of human retina for the NEIBank Project: retbindin, an abundant, novel retinal cDNA and alternative splicing of other retina-preferred gene transcripts. , 2002, Molecular vision.

[260]  M. Blaustein,et al.  Heterogeneity of mitochondrial matrix free Ca2+: resolution of Ca2+ dynamics in individual mitochondria in situ. , 1999, American journal of physiology. Cell physiology.

[261]  R. Ledeen,et al.  Intraneuronal N‐acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin‐associated aspartoacylase , 2001, Journal of neurochemistry.

[262]  K. Park,et al.  Dynamic Change in Plasma Leptin Level during the Perioperative Period , 2003, Hormone Research in Paediatrics.

[263]  M. Iqbal,et al.  Purification of sex hormone‐binding globulin using an affinity matrix in an electrophoretic cell system , 1978, FEBS letters.

[264]  C. Wollheim,et al.  Dynamic pacing of cell metabolism by intracellular Ca2+ transients. , 1994, The Journal of biological chemistry.

[265]  J. Hoek,et al.  Calcium ion-dependent signalling and mitochondrial dysfunction: mitochondrial calcium uptake during hormonal stimulation in intact liver cells and its implication for the mitochondrial permeability transition. , 1995, Biochimica et biophysica acta.

[266]  V. Jancsik,et al.  Ca2+ and Mg2+ as modulators of mitochondrial L-glycerol-3-phosphate dehydrogenase. , 1988, European journal of biochemistry.

[267]  P. Bernardi,et al.  Properties of the Permeability Transition Pore in Mitochondria Devoid of Cyclophilin D* , 2005, Journal of Biological Chemistry.

[268]  L. Tsui,et al.  Slc25a13-Knockout Mice Harbor Metabolic Deficits but Fail To Display Hallmarks of Adult-Onset Type II Citrullinemia , 2004, Molecular and Cellular Biology.

[269]  G. Barritt,et al.  Protein kinase A regulates the disposition of Ca2+ which enters the cytoplasmic space through store-activated Ca2+ channels in rat hepatocytes by diverting inflowing Ca2+ to mitochondria. , 1998, The Biochemical journal.

[270]  K F LaNoue,et al.  Regulation of citric acid cycle by calcium. , 1989, The Journal of biological chemistry.

[271]  A. Halestrap,et al.  A re-evaluation of the role of mitochondrial pyruvate transport in the hormonal control of rat liver mitochondrial pyruvate metabolism. , 1984, The Biochemical journal.

[272]  M. Klingenberg The ADP-ATP Translocation in mitochondria, a membrane potential controlled transport , 1980, The Journal of Membrane Biology.

[273]  P. Slonimski,et al.  F1‐catalysed ATP hydrolysis is required for mitochondrial biogenesis in Saccharomyces cerevisiae growing under conditions where it cannot respire , 2003, Molecular microbiology.

[274]  R. Sutton,et al.  The increasing adenine nucleotide concentration and the maturation of rat liver mitochondria during neonatal development. , 1979, Differentiation; research in biological diversity.

[275]  R. Denton,et al.  Towards the molecular basis for the regulation of mitochondrial dehydrogenases by calcium ions , 1995, Molecular and Cellular Biochemistry.

[276]  Miklós Müller,et al.  Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation , 2003, Nature.

[277]  R. Haynes,et al.  Control of mitochondrial content of adenine nucleotides by submicromolar calcium concentrations and its relationship to hormonal effects. , 1986, The Journal of biological chemistry.

[278]  J. Putney,et al.  Spatial and temporal aspects of cellular calcium signaling , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[279]  T. Saheki,et al.  Essential Role of Aralar in the Transduction of Small Ca+ Signals to Neuronal Mitochondria* , 2006, Journal of Biological Chemistry.

[280]  N. Kneer,et al.  Regulation of gluconeogenesis by norepinephrine, vasopressin, and angiotensin II: a comparative study in the absence and presence of extracellular Ca2+1. , 1983, Archives of biochemistry and biophysics.

[281]  T. Saheki,et al.  Expression of three mitochondrial solute carriers, citrin, aralar1 and ornithine transporter, in relation to urea cycle in mice. , 2002, Biochimica et biophysica acta.

[282]  B. Safer,et al.  Control of the transport of reducing equivalents across the mitochondrial membrane in perfused rat heart. , 1971, Journal of molecular and cellular cardiology.

[283]  K. Lanoue,et al.  The mechanism of Ca2(+)-related control of gluconeogenesis in perfused liver. , 1991, European journal of biochemistry.

[284]  T. Nakazawa,et al.  Energy transduction and adenine nucleotides in mitochondria from rat liver after hypoxic perfusion. , 1977, Journal of biochemistry.

[285]  T. Saheki,et al.  Citrin and aralar1 are Ca2+‐stimulated aspartate/glutamate transporters in mitochondria , 2001, The EMBO journal.

[286]  C. Koehler,et al.  The role of the Tim8p–Tim13p complex in a conserved import pathway for mitochondrial polytopic inner membrane proteins , 2002, The Journal of cell biology.

[287]  J. Medina,et al.  The role of ATP/ADP ratio in the control of hepatic gluconeogenesis during the early neonatal period. , 1983, Biochimica et biophysica acta.

[288]  M. Bihoreau,et al.  Insulin and glucagon during the perinatal period: secretion and metabolic effects on the liver. , 1985, Biology of the neonate.

[289]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[290]  D. Gardner,et al.  Mitochondrial Malate-Aspartate Shuttle Regulates Mouse Embryo Nutrient Consumption* , 2005, Journal of Biological Chemistry.

[291]  J. Aprille Mechanism and regulation of the mitochondrial ATP-Mg/P(i) carrier. , 1993, Journal of bioenergetics and biomembranes.

[292]  P. Dimarco,et al.  Adenosine 3':5'-monophosphate in perinatal rat liver. Ontogeny and response to hormones. , 1978, European journal of biochemistry.

[293]  M. Crompton,et al.  Evidence for the involvement of a membrane-associated cyclosporin-A-binding protein in the Ca(2+)-activated inner membrane pore of heart mitochondria. , 1995, European journal of biochemistry.

[294]  H. Wohlrab,et al.  Mitochondrial phosphate transport. N-ethylmaleimide insensitivity correlates with absence of beef heart-like Cys42 from the Saccharomyces cerevisiae phosphate transport protein. , 1990, The Journal of biological chemistry.

[295]  A. Parekh,et al.  Respiring mitochondria determine the pattern of activation and inactivation of the store‐operated Ca2+ current ICRAC , 2000, The EMBO journal.

[296]  M. Crompton,et al.  On the involvement of a mitochondrial pore in reperfusion injury , 1993, Basic Research in Cardiology.

[297]  Keiko Kobayashi,et al.  Developmental changes in the Ca2+-regulated mitochondrial aspartate-glutamate carrier aralar1 in brain and prominent expression in the spinal cord. , 2003, Brain research. Developmental brain research.

[298]  R. Brinster Studies on the development of mouse embyros in vitro. II. The effect of energy source , 1965 .

[299]  G. Hajnóczky,et al.  Calcium Signal Transmission between Ryanodine Receptors and Mitochondria* , 2000, The Journal of Biological Chemistry.

[300]  J. Williamson,et al.  Interrelationships between gluconeogenesis and ureogenesis in isolated hepatocytes. , 1978, The Journal of biological chemistry.

[301]  J. Williamson,et al.  Interrelationships between malate-aspartate shuttle and citric acid cycle in rat heart mitochondria. , 1971, Metabolism: clinical and experimental.

[302]  J. Mccormack,et al.  Role of calcium ions in regulation of mammalian intramitochondrial metabolism. , 1990, Physiological reviews.

[303]  K. Jungermann,et al.  Regulation of Hepatic Metabolism , 1986, Springer US.

[304]  T. Penttilä,et al.  Inhibition of the mitochondrial calcium uniporter by antibodies against a 40-kDa glycorproteinT , 1993, Journal of bioenergetics and biomembranes.

[305]  F. Sluse,et al.  Mechanism of the exchanges catalysed by the oxoglutarate translocator of rat-heart mitochondria. Kinetics of the external-product inhibition. , 1973, European journal of biochemistry.

[306]  P. Reinhart,et al.  Stimulation by alpha-adrenergic agonists of Ca2+ fluxes, mitochondrial oxidation and gluconeogenesis in perfused rat liver. , 1983, The Biochemical journal.

[307]  N. Huzel,et al.  Calcium-binding ATPase inhibitor protein of bovine heart mitochondria. Role in ATP synthesis and effect of Ca2+. , 1989, Biochemistry.

[308]  J. Hiltunen,et al.  Subcellular distribution of myocardial 5'-nucleotidase. , 1990, Journal of molecular and cellular cardiology.

[309]  A. Halestrap Mitochondrial permeability: Dual role for the ADP/ATP translocator? , 2004, Nature.

[310]  S. Javadov,et al.  The effects of ischaemic preconditioning, diazoxide and 5‐hydroxydecanoate on rat heart mitochondrial volume and respiration , 2002, The Journal of physiology.

[311]  S. Javadov,et al.  Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. , 1998, Biochimica et biophysica acta.

[312]  M. Namboodiri,et al.  N-acetylaspartate as an acetyl source in the nervous system. , 1995, Brain research. Molecular brain research.

[313]  M. Montero,et al.  A novel regulatory mechanism of the mitochondrial Ca2+ uniporter revealed by the p38 mitogen‐activated protein kinase inhibitor sb202190 , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[314]  J. Satrústegui,et al.  The Malate-Aspartate NADH Shuttle Member Aralar1 Determines Glucose Metabolic Fate, Mitochondrial Activity, and Insulin Secretion in Beta Cells* , 2004, Journal of Biological Chemistry.

[315]  H. Wohlrab,et al.  Yeast mitochondrial phosphate transport protein expressed in Escherichia coli. Site-directed mutations at threonine-43 and at a similar location in the second tandem repeat (isoleucine-141). , 1994, Biochemistry.

[316]  Tullio Pozzan,et al.  Microdomains of intracellular Ca2+: molecular determinants and functional consequences. , 2006, Physiological reviews.

[317]  D. Bers,et al.  Intracellular Ca2+ increases the mitochondrial NADH concentration during elevated work in intact cardiac muscle. , 1997, Circulation research.

[318]  J. K. Pollak The maturation of the inner membrane of foetal rat liver mitochondria. , 1975, The Biochemical journal.

[319]  J. Ballesta,et al.  The sequence of a 17 933 bp segment of Saccharomyces cerevisiae chromosome XIV contains the RHO2, TOP2, MKT1 and END3 genes and five new open reading frames , 1996, Yeast.

[320]  E J Sass,et al.  Characterization of cytosolic calcium oscillations induced by phenylephrine and vasopressin in single fura-2-loaded hepatocytes. , 1989, The Journal of biological chemistry.

[321]  C. Wollheim,et al.  Role of mitochondrial calcium in metabolism-secretion coupling in nutrient-stimulated insulin release. , 1998, Diabetes & metabolism.

[322]  J. Walker,et al.  Identification and metabolic role of the mitochondrial aspartate‐glutamate transporter in Saccharomyces cerevisiae , 2003, Molecular microbiology.

[323]  Paolo Bernardi,et al.  The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal , 1996, Journal of bioenergetics and biomembranes.

[324]  György Hajnóczky,et al.  Decoding of cytosolic calcium oscillations in the mitochondria , 1995, Cell.

[325]  C. Wollheim,et al.  What Couples Glycolysis to Mitochondrial Signal Generation in Glucose‐Stimulated Insulin Secretion? , 2000, IUBMB Life - A Journal of the International Union of Biochemistry and Molecular Biology.

[326]  M. J. MacDonald,et al.  Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing. , 1994, The Journal of biological chemistry.

[327]  J. Aprille,et al.  Neonatal Hypoxia or Maternal Diabetes Delays Postnatal Development of Liver Mitochondria , 1987, Pediatric Research.

[328]  D. Dransfield,et al.  Regulation of the mitochondrial ATP-Mg/Pi carrier in isolated hepatocytes. , 1993, The American journal of physiology.

[329]  O. H. Lowry,et al.  Uptake of Exogenous Aspartate into Circumventricular Organs but Not Other Regions of Adult Mouse Brain , 1984, Journal of neurochemistry.

[330]  T. Hagen,et al.  Intramitochondrial protein synthesis is regulated by matrix adenine nucleotide content and requires calcium. , 1995, Archives of biochemistry and biophysics.

[331]  J. M. Izquierdo,et al.  Mammalian adaptation to extrauterine environment: mitochondrial functional impairment caused by prematurity. , 1994, The Biochemical journal.

[332]  P. Reynier,et al.  Oxygen consumption and expression of the adenine nucleotide translocator in cells lacking mitochondrial DNA. , 2002, Experimental cell research.

[333]  A. Halestrap,et al.  A pore way to die , 2005 .

[334]  J. Moffett,et al.  Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan's disease. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[335]  E. Bacchelli,et al.  SLC25A12 and CMYA3 gene variants are not associated with autism in the IMGSAC multiplex family sample , 2006, European Journal of Human Genetics.

[336]  T. Pozzan,et al.  Mitochondria as all‐round players of the calcium game , 2000, The Journal of physiology.

[337]  G. Asimakis,et al.  Myocardial ischemia: correlation of mitochondrial adenine nucleotide and respiratory function. , 1984, Journal of molecular and cellular cardiology.

[338]  S. Neubauer,et al.  Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart. , 1988, Circulation research.

[339]  R. Brinster,et al.  Development of eight-cell mouse embryos in vitro. , 1966, Experimental cell research.

[340]  J. Mccormack,et al.  Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria. , 1985, The Biochemical journal.

[341]  I. Hassinen,et al.  Ischaemic preconditioning and a mitochondrial KATP channel opener both produce cardioprotection accompanied by F1F0-ATPase inhibition in early ischaemia , 2003, Basic Research in Cardiology.

[342]  G. Fiermonte,et al.  Transgenic expression of the deoxynucleotide carrier causes mitochondrial damage that is enhanced by NRTIs for AIDS , 2005, Laboratory Investigation.

[343]  R. Scholz,et al.  Control of energy metabolism by glucagon and adrenaline in perfused rat liver , 1986, FEBS letters.

[344]  J. Enríquez,et al.  Highly efficient DNA synthesis in isolated mitochondria from rat liver. , 1994, Nucleic acids research.

[345]  P. Bernardi,et al.  A mitochondrial perspective on cell death. , 2001, Trends in biochemical sciences.

[346]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[347]  R. Sutton,et al.  Hormone-initiated maturation of rat liver mitochondria after birth. , 1980, The Biochemical journal.

[348]  A. Kowaltowski,et al.  Ca2+ acting at the external side of the inner mitochondrial membrane can stimulate mitochondrial permeability transition induced by phenylarsine oxide. , 1997, Biochimica et biophysica acta.

[349]  R. Krämer,et al.  Mitochondrial carrier proteins can reversibly change their transport mode: the cases of the aspartate/glutamate and the phosphate carrier. , 1998, Experimental physiology.

[350]  N. Kraus-Friedmann What is the role of Ca2+ in the hormonal stimulation of gluconeogenesis? , 1986 .

[351]  N. Morgan,et al.  Modulation of the alpha 1-adrenergic control of hepatocyte calcium redistribution by increases in cyclic AMP. , 1983, The Journal of biological chemistry.

[352]  H. Kröner "Allosteric regulation" of calcium-uptake in rat liver mitochondria. , 1986, Biological chemistry Hoppe-Seyler.

[353]  A. Schoolwerth,et al.  The role of microcompartmentation in the regulation of glutamate metabolism by rat kidney mitochondria. , 1980, The Journal of biological chemistry.

[354]  The real kinetics of the mitochondrial calcium uniporter of the liver and its role in cell calcium regulation. , 1988, Biological chemistry Hoppe-Seyler.

[355]  A. Lehninger,et al.  Ca2+ metabolism in yeast cells and mitochondria. , 1970, Biochimica et biophysica acta.

[356]  J. Aprille Regulation of the mitochondrial adenine nucleotide pool size in liver: mechanism and metabolic role , 1988, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[357]  R. Krämer Characterization of pyrophosphate exchange by the reconstituted adenine nucleotide translocator from mitochondria. , 1985, Biochemical and biophysical research communications.

[358]  D. Iacopetta,et al.  A fourth ADP/ATP carrier isoform in man: identification, bacterial expression, functional characterization and tissue distribution , 2005, FEBS letters.

[359]  M. Titheradge,et al.  The hormonal stimulation of ureogenesis in isolated hepatocytes through increases in mitochondrial ATP production. , 1980, Archives of biochemistry and biophysics.

[360]  M. Berridge,et al.  Mitochondrial Ca2+ Uptake Depends on the Spatial and Temporal Profile of Cytosolic Ca2+ Signals* , 2001, The Journal of Biological Chemistry.

[361]  G. Asimakis,et al.  Phosphate-induced efflux of adenine nucleotides from rat-heart mitochondria: evaluation of the roles of the phosphate/hydroxyl exchanger and the dicarboxylate carrier. , 1987, Biochimica et biophysica acta.

[362]  G. Baird,et al.  Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria , 2002, The Journal of cell biology.

[363]  M. Bauer,et al.  The role of the TIM8–13 complex in the import of Tim23 into mitochondria , 2000, EMBO Journal.

[364]  A. Rasmusson,et al.  Identification of a mitochondrial external NADPH dehydrogenase by overexpression in transgenic Nicotiana sylvestris. , 2004, The Plant journal : for cell and molecular biology.

[365]  D. Zorov,et al.  Role of mitochondrial calcium transport in the control of substrate oxidation , 1998, Molecular and Cellular Biochemistry.

[366]  S. Merchant,et al.  Human deafness dystonia syndrome is a mitochondrial disease. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[367]  G. Szabadkai,et al.  Cytoplasmic Ca2+ at low submicromolar concentration stimulates mitochondrial metabolism in rat luteal cells , 2001, Pflügers Archiv.

[368]  S. Schuchmann,et al.  Coupling of neuronal activity and mitochondrial metabolism as revealed by nad(p)h fluorescence signals in organotypic hippocampal slice cultures of the rat , 2003, Neuroscience.

[369]  Z. Jiang,et al.  Characterization of a dCTP Transport Activity Reconstituted from Human Mitochondria* , 1999, The Journal of Biological Chemistry.

[370]  W. Henke,et al.  The contribution of adenine nucleotide loss to ischemia-induced impairment of rat kidney cortex mitochondria. , 1992, Biochimica et biophysica acta.

[371]  R. Bohnensack,et al.  Expression of the ADP/ATP carrier and expansion of the mitochondrial (ATP + ADP) pool contribute to postnatal maturation of the rat heart. , 1996, European journal of biochemistry.

[372]  S. Scherer,et al.  Assignment1 of the SLC25A12 gene coding for the human calcium-binding mitochondrial solute carrier protein aralar to human chromosome 2q24 , 2000, Cytogenetic and Genome Research.

[373]  T. Wallimann,et al.  Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore , 1998, FEBS letters.

[374]  M. Ravier,et al.  The Oscillatory Behavior of Pancreatic Islets from Mice with Mitochondrial Glycerol-3-phosphate Dehydrogenase Knockout* , 2000, The Journal of Biological Chemistry.

[375]  M. Heymann,et al.  Myocardial oxygen and carbohydrate consumption in fetal lambs in utero and in adult sheep. , 1980, The American journal of physiology.

[376]  J. M. Izquierdo,et al.  Changing Patterns of Transcriptional and Post-transcriptional Control of β-F1-ATPase Gene Expression during Mitochondrial Biogenesis in Liver (*) , 1995, The Journal of Biological Chemistry.

[377]  M. Berridge Elementary and global aspects of calcium signalling. , 1997, The Journal of physiology.

[378]  F M Matschinsky,et al.  A Lesson in Metabolic Regulation Inspired by the Glucokinase Glucose Sensor Paradigm , 1996, Diabetes.

[379]  C. H. Chen,et al.  The role of cytoplasmic deoxycytidine kinase in the mitochondrial effects of the anti-human immunodeficiency virus compound, 2',3'-dideoxycytidine. , 1992, The Journal of biological chemistry.

[380]  T. Arnould,et al.  mtCLIC is up‐regulated and maintains a mitochondrial membrane potential in mtDNA‐depleted L929 cells , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[381]  J. Mazat,et al.  From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. , 1998, Biochimica et biophysica acta.

[382]  J. Hoek,et al.  Hormonal stimulation, mitochondrial Ca2+ accumulation, and the control of the mitochondrial permeability transition in intact hepatocytes. , 1997 .

[383]  S. Scherer,et al.  Genomic structure of the adult-onset type II citrullinemia gene, SLC25A13, and cloning and expression of its mouse homologue. , 1999, Genomics.

[384]  M. Duchen,et al.  Prostaglandin F2alpha potentiates the calcium dependent activation of mitochondrial metabolism in luteal cells. , 2005, Cell calcium.

[385]  Keiko Kobayashi,et al.  Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD) , 2002, Journal of Human Genetics.

[386]  G. Asimakis,et al.  In vitro alteration of the size of the liver mitochondrial adenine nucleotide pool: correlation with respiratory functions. , 1980, Archives of Biochemistry and Biophysics.

[387]  A. Fisher,et al.  Oxidation of α-glycerophosphate by mitochondria from lungs of rabbits, sheep and pigeons☆ , 1975 .

[388]  J. Cuezva,et al.  The Newborn of Diabetic Rat. II. Impaired Gluconeogenesis in the Postnatal Period , 1982, Pediatric Research.

[389]  R. Balaban Cardiac energy metabolism homeostasis: role of cytosolic calcium. , 2002, Journal of molecular and cellular cardiology.

[390]  M. Heisenberg,et al.  Experimental psychology: Event timing turns punishment to reward , 2004, Nature.

[391]  M. Prentki,et al.  Regulation of pancreatic beta-cell mitochondrial metabolism: influence of Ca2+, substrate and ADP. , 1996, The Biochemical journal.

[392]  Colin T. Jones,et al.  The Biochemical development of the fetus and neonate , 1982 .

[393]  T. Saheki,et al.  Reduced N-Acetylaspartate Levels in Mice Lacking Aralar, a Brain- and Muscle-type Mitochondrial Aspartate-glutamate Carrier* , 2005, Journal of Biological Chemistry.

[394]  A. Schoolwerth,et al.  Metabolite transport in mitochondria. , 1979, Annual review of biochemistry.

[395]  A. Martínez-Serrano,et al.  Regulation of cytosolic free calcium concentration by intrasynaptic mitochondria. , 1992, Molecular biology of the cell.

[396]  K. Gunter,et al.  The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaM in liver mitochondria. , 2001, Biochimica et biophysica acta.

[397]  A. Órfão,et al.  Postnatal changes in rhodamine‐123 stained mitochondrial populations are sensitive to protein synthesis inhibitors but mimicked in vitro by atp , 1994, FEBS letters.

[398]  J. Hsuan,et al.  Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress. , 1996, European journal of biochemistry.

[399]  J. Satrústegui,et al.  Postnatal development of rat liver mitochondrial functions. The roles of protein synthesis and of adenine nucleotides. , 1988, The Journal of biological chemistry.

[400]  Alberto Orfao,et al.  Flow cytometry of isolated mitochondria during development and under some pathological conditions , 2002, FEBS letters.

[401]  P. J. Johnson,et al.  Origins of hydrogenosomes and mitochondria: evolution and organelle biogenesis. , 2000, Current opinion in microbiology.

[402]  K. Gunter,et al.  Mitochondrial calcium transport: mechanisms and functions. , 2000, Cell calcium.

[403]  Jörg Martin Molecular Chaperones and Mitochondrial Protein Folding , 1997, Journal of bioenergetics and biomembranes.

[404]  A. Miseta,et al.  The intracellular dissipation of cytosolic calcium following glucose re‐addition to carbohydrate depleted Saccharomyces cerevisiae , 2004, FEBS letters.

[405]  C. Newgard,et al.  Mitochondrial Metabolism Sets the Maximal Limit of Fuel-stimulated Insulin Secretion in a Model Pancreatic Beta Cell , 2002, The Journal of Biological Chemistry.

[406]  D. Horner,et al.  A Novel ADP/ATP Transporter in the Mitosome of the Microaerophilic Human Parasite Entamoeba histolytica , 2005, Current Biology.

[407]  T. Dierks,et al.  Pore-like and carrier-like properties of the mitochondrial aspartate/glutamate carrier after modification by SH-reagents: evidence for a performed channel as a structural requirement of carrier-mediated transport. , 1990, Biochimica et biophysica acta.

[408]  Ferdinando Palmieri,et al.  The mitochondrial transporter family (SLC25): physiological and pathological implications , 2004, Pflügers Archiv.

[409]  J. Lamotte‐Brasseur,et al.  Phylogenetic Classification of the Mitochondrial Carrier Family of Saccharomyces cerevisiae , 1997, Yeast.

[410]  S. Futaki,et al.  Stoichiometry of subunit e in rat liver mitochondrial H(+)-ATP synthase and membrane topology of its putative Ca(2+)-dependent regulatory region. , 2001, Biochimica et biophysica acta.

[411]  J. Aprille,et al.  Regulation of mitochondrial adenine nucleotide content in newborn rabbit liver. , 1987, The American journal of physiology.

[412]  J. Vitorica,et al.  Rapid postnatal developmental changes in the passive proton permeability of the inner membrane in rat liver mitochondria. , 1990, Journal of biochemistry.

[413]  C. Valcarce,et al.  Interaction of adenine nucleotides with the adenine nucleotide translocase regulates the developmental changes in proton conductance of the inner mitochondrial membrane , 1991, FEBS letters.

[414]  E. Carafoli,et al.  The effects of ruthenium red on reactions of blowfly flight muscle mitochondria with calcium. , 1972, Biochemical and biophysical research communications.

[415]  A. Brennicke,et al.  Arabidopsis Genes Encoding Mitochondrial Type II NAD(P)H Dehydrogenases Have Different Evolutionary Origin and Show Distinct Responses to Light1 , 2003, Plant Physiology.

[416]  G. Rutter,et al.  Mitochondrial priming modifies Ca2+ oscillations and insulin secretion in pancreatic islets. , 2001, The Biochemical journal.

[417]  Paola Bovolenta,et al.  Expression of the aspartate/glutamate mitochondrial carriers aralar1 and citrin during development and in adult rat tissues. , 2002, European journal of biochemistry.

[418]  M. Klingenberg Structure-function of the ADP/ATP carrier. , 1992, Biochemical Society transactions.

[419]  H. Wohlrab The human mitochondrial transport protein family: identification and protein regions significant for transport function and substrate specificity. , 2005, Biochimica et biophysica acta.

[420]  C. Wollheim,et al.  Mitochondrial signals in glucose‐stimulated insulin secretion in the beta cell , 2000, The Journal of physiology.

[421]  J. Katz,et al.  Gluconeogenesis in the kidney cortex. Effects of D-malate and amino-oxyacetate. , 1970, The Biochemical journal.

[422]  J. Aprille,et al.  ATP-MgPi carrier activity in rat liver mitochondria , 1992 .

[423]  P. Bernardi The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. , 1996, Biochimica et biophysica acta.

[424]  J. Aprille Mechanism and regulation of the mitochondrial ATP-Mg/Pi carrier , 1993 .

[425]  A. Lehninger,et al.  A survey of the interaction of calcium ions with mitochondria from different tissues and species. , 1971, The Biochemical journal.

[426]  M. van der Giezen,et al.  Degenerate mitochondria , 2005, EMBO reports.

[427]  J. Joyal,et al.  The ATP-Mg/Pi carrier of rat liver mitochondria catalyzes a divalent electroneutral exchange. , 1992, The Journal of biological chemistry.

[428]  Xin Jie Chen Sal1p, a Calcium-Dependent Carrier Protein That Suppresses an Essential Cellular Function Associated With the Aac2 Isoform of ADP/ATP Translocase in Saccharomyces cerevisiae , 2004, Genetics.

[429]  O. Petersen,et al.  Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate , 1993, Cell.

[430]  K. Lanoue,et al.  Energy-driven aspartate efflux from heart and liver mitochondria. , 1974, The Journal of biological chemistry.

[431]  C. Godinot,et al.  Functional F1-ATPase essential in maintaining growth and membrane potential of human mitochondrial DNA-depleted rho degrees cells. , 1998, The Journal of biological chemistry.

[432]  D. Gautheron,et al.  Effects of ATP on various steps controlling the rate of oxidative phosphorylation in newborn rat liver mitochondria. , 1984, Archives of biochemistry and biophysics.

[433]  J. Plumb,et al.  The stimulatory effect of glucagon and dibutyryl cyclic AMP on ureogenesis and gluconeogenesis in relation to the mitochondrial ATP contnet , 1977, FEBS letters.

[434]  T. Scholz,et al.  Mitochondrial F1-ATPase activity of canine myocardium: effects of hypoxia and stimulation. , 1994, The American journal of physiology.