Human mesenchymal stromal cells engineered to express collagen VII can restore anchoring fibrils in recessive dystrophic epidermolysis bullosa skin graft chimeras.

[1]  A. Salgado,et al.  Exploiting the impact of the secretome of MSCs isolated from different tissue sources on neuronal differentiation and axonal growth. , 2018, Biochimie.

[2]  A. Hovnanian,et al.  Intradermal Injection of Bone Marrow Mesenchymal Stromal Cells Corrects Recessive Dystrophic Epidermolysis Bullosa in a Xenograft Model. , 2018, The Journal of investigative dermatology.

[3]  D. Sipp,et al.  Clear up this stem-cell mess , 2018, Nature.

[4]  E. Badiavas,et al.  Dual mechanism of type VII collagen transfer by bone marrow mesenchymal stem cell extracellular vesicles to recessive dystrophic epidermolysis bullosa fibroblasts. , 2018, Biochimie.

[5]  K. Rieger,et al.  Safety and Wound Outcomes Following Genetically Corrected Autologous Epidermal Grafts in Patients With Recessive Dystrophic Epidermolysis Bullosa. , 2016, JAMA.

[6]  J. R. McMillan,et al.  Lentiviral Engineered Fibroblasts Expressing Codon-Optimized COL7A1 Restore Anchoring Fibrils in RDEB , 2016, The Journal of investigative dermatology.

[7]  J. Tolar,et al.  Potential of Systemic Allogeneic Mesenchymal Stromal Cell Therapy for Children with Recessive Dystrophic Epidermolysis Bullosa. , 2015, The Journal of investigative dermatology.

[8]  R. Handgretinger,et al.  High Local Concentrations of Intradermal MSCs Restore Skin Integrity and Facilitate Wound Healing in Dystrophic Epidermolysis Bullosa. , 2015, Molecular therapy : the journal of the American Society of Gene Therapy.

[9]  G. Knott,et al.  A single epidermal stem cell strategy for safe ex vivo gene therapy , 2015, EMBO molecular medicine.

[10]  Y. Kaneda,et al.  Transplanted Bone Marrow–Derived Circulating PDGFRα+ Cells Restore Type VII Collagen in Recessive Dystrophic Epidermolysis Bullosa Mouse Skin Graft , 2015, The Journal of Immunology.

[11]  J. Tolar,et al.  Preconditioning of mesenchymal stem cells for improved transplantation efficacy in recessive dystrophic epidermolysis bullosa , 2014, Stem Cell Research & Therapy.

[12]  E. Bauer,et al.  Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification. , 2014, Journal of the American Academy of Dermatology.

[13]  L. Dürselen,et al.  TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. , 2014, The Journal of investigative dermatology.

[14]  D. Murrell,et al.  A phase II randomized vehicle-controlled trial of intradermal allogeneic fibroblasts for recessive dystrophic epidermolysis bullosa. , 2013, Journal of the American Academy of Dermatology.

[15]  J. McGrath,et al.  Fibroblast cell therapy enhances initial healing in recessive dystrophic epidermolysis bullosa wounds: results of a randomized, vehicle‐controlled trial , 2013, The British journal of dermatology.

[16]  J. Wagner,et al.  Allogeneic blood and bone marrow cells for the treatment of severe epidermolysis bullosa: repair of the extracellular matrix , 2013, The Lancet.

[17]  E. Pillay,et al.  Living in dressings and bandages: findings from workshops with people with Epidermolysis bullosa , 2013, International wound journal.

[18]  J. Uitto,et al.  Intravenously Injected Recombinant Human Type VII Collagen Homes to Skin Wounds and Restores Skin Integrity of Dystrophic Epidermolysis Bullosa , 2013, The Journal of investigative dermatology.

[19]  J. Wagner,et al.  Management of severe epidermolysis bullosa by haematopoietic transplant: principles, perspectives and pitfalls , 2012, Experimental dermatology.

[20]  S. Böhm,et al.  Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC , 2011, Cell Communication and Signaling.

[21]  M. del Río,et al.  Ex-vivo gene therapy restores LEKTI activity and corrects the architecture of Netherton syndrome-derived skin grafts. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[22]  Jakub Tolar,et al.  Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. , 2010, The New England journal of medicine.

[23]  S. González,et al.  Replenishment of type VII collagen and re-epithelialization of chronically ulcerated skin after intradermal administration of allogeneic mesenchymal stromal cells in two patients with recessive dystrophic epidermolysis bullosa. , 2010, Cytotherapy.

[24]  J. Tolar,et al.  Immune regulatory cells in umbilical cord blood: T regulatory cells and mesenchymal stromal cells , 2009, British journal of haematology.

[25]  J. Mellerio,et al.  Extracutaneous manifestations and complications of inherited epidermolysis bullosa: part II. Other organs. , 2009, Journal of the American Academy of Dermatology.

[26]  P. Delafontaine,et al.  Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. , 2009, Cell stem cell.

[27]  Francesco Dazzi,et al.  Mesenchymal stem cells: the fibroblasts’ new clothes? , 2009, Haematologica.

[28]  J. Wagner,et al.  Amelioration of epidermolysis bullosa by transfer of wild-type bone marrow cells. , 2009, Blood.

[29]  A. Caplan Why are MSCs therapeutic? New data: new insight , 2009, The Journal of pathology.

[30]  H. Shimizu,et al.  Mesenchymal Stem Cells Are Recruited into Wounded Skin and Contribute to Wound Repair by Transdifferentiation into Multiple Skin Cell Type1 , 2008, The Journal of Immunology.

[31]  J. Uitto,et al.  Recessive dystrophic epidermolysis bullosa-associated squamous-cell carcinoma: an enigmatic entity with complex pathogenesis. , 2007, The Journal of investigative dermatology.

[32]  M. del Río,et al.  Long-term engraftment of single genetically modified human epidermal holoclones enables safety pre-assessment of cutaneous gene therapy. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[33]  J. Mellerio,et al.  Medical management of epidermolysis bullosa: Proceedings of the IInd International Symposium on Epidermolysis Bullosa, Santiago, Chile, 2005 , 2007, International journal of dermatology.

[34]  Wei Li,et al.  Injection of recombinant human type VII collagen restores collagen function in dystrophic epidermolysis bullosa , 2004, Nature Medicine.

[35]  C. Bodemer,et al.  Characterization of 18 new mutations in COL7A1 in recessive dystrophic epidermolysis bullosa provides evidence for distinct molecular mechanisms underlying defective anchoring fibril formation. , 1997, American journal of human genetics.

[36]  R. Eady,et al.  Evaluation of anchoring fibrils and other components of the dermal-epidermal junction in dystrophic epidermolysis bullosa by a quantitative ultrastructural technique. , 1985, The Journal of investigative dermatology.

[37]  Phase I/II ex vivo gene therapy clinical trial for recessive dystrophic epidermolysis bullosa using skin equivalent grafts genetically corrected with a COL7A1-encoding SIN retroviral vector (GENEGRAFT). , 2014, Human gene therapy. Clinical development.

[38]  M. del Río,et al.  Human involucrin promoter mediates repression-resistant and compartment-specific LEKTI expression. , 2012, Human gene therapy.

[39]  J. Uitto,et al.  Gene expression signatures of mouse bone marrow-derived mesenchymal stem cells in the cutaneous environment and therapeutic implications for blistering skin disorder. , 2011, Cytotherapy.

[40]  J. Uitto,et al.  Injection of recombinant human type VII collagen corrects the disease phenotype in a murine model of dystrophic epidermolysis bullosa. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[41]  Kevin McIntosh,et al.  Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. , 2002, Experimental hematology.