Quantum erasers and probing classifications of entanglement via nuclear magnetic resonance

We report the implementation of two- and three-spin quantum erasers using nuclear magnetic resonance (NMR). Quantum erasers provide a means of manipulating quantum entanglement, an important resource for quantum information processing. Here, we first use a two-spin system to illustrate the essential features of quantum erasers. The extension to a three-spin "disentanglement eraser" shows that entanglement in a subensemble can be recovered if a proper measurement of the ancillary system is carried out. Finally, we use the same pair of orthogonal decoherent operations used in quantum erasers to probe the two classes of entanglement in tripartite quantum systems: the Greenberger-Horne-Zeilinger state and the W state. A detailed presentation is given of the experimental decoherent control methods that emulate the loss of phase information in strong measurements, and the use of NMR decoupling techniques to implement partial trace operations.

[1]  M. Scully,et al.  Quantum eraser: A proposed photon correlation experiment concerning observation and , 1982 .

[2]  Timothy F. Havel,et al.  A study of quantum error correction by geometric algebra and liquid-state NMR spectroscopy , 2000, quant-ph/0004030.

[3]  Timothy F. Havel,et al.  Expressing the operations of quantum computing in multiparticle geometric algebra , 1998 .

[4]  Herzog,et al.  Complementarity and the quantum eraser. , 1995, Physical review letters.

[5]  Robert Garisto,et al.  Entanglement of projection and a new class of quantum erasers , 1999 .

[6]  R Laflamme,et al.  Experimental Realization of Noiseless Subsystems for Quantum Information Processing , 2001, Science.

[7]  John S. Waugh,et al.  Theory of broadband spin decoupling , 1982 .

[8]  Timothy F. Havel,et al.  Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing , 2002, quant-ph/0202065.

[9]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[10]  Observations of quantum dynamics by solution-state NMR spectroscopy , 1999, quant-ph/9905061.

[11]  Lorenza Viola,et al.  Hadamard products of product operators and the design of gradient-diffusion experiments for simulating decoherence by NMR spectroscopy , 2000, quant-ph/0009010.

[12]  Timothy F. Havel,et al.  NMR Based Quantum Information Processing: Achievements and Prospects , 2000, quant-ph/0004104.

[13]  Jean-Michel Raimond,et al.  Reversible Decoherence of a Mesoscopic Superposition of Field States , 1997 .

[14]  David G. Cory,et al.  A generalized k-space formalism for treating the spatial aspects of a variety of NMR experiments , 1998 .

[15]  Steinberg,et al.  Three proposed "quantum erasers" , 1994, Physical review. A, Atomic, molecular, and optical physics.

[16]  B. Englert,et al.  Quantum optical tests of complementarity , 1991, Nature.

[17]  J. Eisert,et al.  Schmidt measure as a tool for quantifying multiparticle entanglement , 2000, quant-ph/0007081.

[18]  Timothy F. Havel,et al.  Principles and Demonstrations of Quantum Information Processing by NMR Spectroscopy , 2000, Applicable Algebra in Engineering, Communication and Computing.

[19]  W. Wootters,et al.  Entangled Rings , 2000, quant-ph/0009041.

[20]  E Knill,et al.  Efficient refocusing of one-spin and two-spin interactions for NMR quantum computation. , 1999, Journal of magnetic resonance.

[21]  Timothy F. Havel,et al.  Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing , 1997, quant-ph/9709001.

[22]  E M Fortunato,et al.  NMR analog of the quantum disentanglement eraser. , 2001, Physical review letters.

[23]  N. Christensen,et al.  Potential multiparticle entanglement measure , 2000, quant-ph/0010052.

[24]  Seth Lloyd,et al.  Experimental demonstration of greenberger-horne-zeilinger correlations using nuclear magnetic resonance , 2000 .

[25]  D. Leung,et al.  Experimental realization of a quantum algorithm , 1998, Nature.