Bioinspired Design Criteria for Damage‐Resistant Materials with Periodically Varying Microstructure

Many biological materials, such as bone, nacre, or certain deep‐sea glass sponges, have a hierarchical structure that makes them stiff, tough, and damage tolerant. Different structural features contributing to these exceptional properties have been identified, but a common motif of these materials, the periodic arrangement of structural components with strongly varying stiffness, has not gained sufficient attention. Here we show that the periodicity of the material properties is one of the dominant reasons for the high fracture resistance of these structures and their tolerance to short cracks. If the composite architecture fulfills certain design rules, which are derived in this paper, the stiff structure becomes fracture resistant and, most of all, flaw tolerant. This architectural criterion inspired from nature provides useful guidelines for the design of defect‐tolerant resistant man‐made materials.

[1]  Reza Rabiei,et al.  Failure mode transition in nacre and bone-like materials. , 2010, Acta biomaterialia.

[2]  E. Gutmanas,et al.  Nanoindentation, Modeling, and Toughening Effects of Zirconia/Organic Nanolaminates , 2010 .

[3]  Baohua Ji,et al.  Mechanical Principles of Biological Nanocomposites , 2010 .

[4]  Brian R. Lawn,et al.  Teeth: Among Nature's Most Durable Biocomposites , 2010 .

[5]  G. Mayer,et al.  Influence of moisture on the mechanical behavior of a natural composite. , 2010, Acta biomaterialia.

[6]  R. Ritchie,et al.  On the Mechanistic Origins of Toughness in Bone , 2010 .

[7]  P. Aken,et al.  Toughening through nature-adapted nanoscale design. , 2009, Nano letters.

[8]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[9]  B. Lawn,et al.  Analysis of fracture and deformation modes in teeth subjected to occlusal loading. , 2009, Acta biomaterialia.

[10]  R. Ritchie,et al.  On the Fracture Toughness of Advanced Materials , 2009 .

[11]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[12]  R O Ritchie,et al.  The true toughness of human cortical bone measured with realistically short cracks. , 2008, Nature materials.

[13]  J. Aizenberg,et al.  Effects of Laminate Architecture on Fracture Resistance of Sponge Biosilica: Lessons from Nature , 2008 .

[14]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[15]  Muhammad Nawaz Tahir,et al.  Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. , 2008, Journal of structural biology.

[16]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[17]  P. Fratzl,et al.  Hindered Crack Propagation in Materials with Periodically Varying Young's Modulus—Lessons from Biological Materials , 2007 .

[18]  Brian D. Flinn,et al.  Mechanisms of toughening of a natural rigid composite , 2007 .

[19]  Joanna Aizenberg,et al.  Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. , 2007, Journal of structural biology.

[20]  Horacio Dante Espinosa,et al.  An Experimental Investigation of Deformation and Fracture of Nacre–Mother of Pearl , 2007 .

[21]  James C. Weaver,et al.  Micromechanical properties of biological silica in skeletons of deep-sea sponges , 2006 .

[22]  Huajian Gao,et al.  Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials , 2006 .

[23]  F. Fischer,et al.  Crack Tip Shielding or Anti-shielding due to Smooth and Discontinuous Material Inhomogeneities , 2005 .

[24]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[25]  Baohua Ji,et al.  Mechanical properties of nanostructure of biological materials , 2004 .

[26]  A. Heuer,et al.  Fracture mechanisms of the Strombus gigas conch shell: II-micromechanics analyses of multiple cracking and large-scale crack bridging , 2004 .

[27]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Arcady Dyskin,et al.  A new principle in design of composite materials: reinforcement by interlocked elements , 2003 .

[29]  Elena Pasternak,et al.  A new concept in design of materials and structures: assemblies of interlocked tetrahedron-shaped elements , 2001 .

[30]  P. Fratzl,et al.  Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. , 2000, Biophysical journal.

[31]  O. Kolednik The yield stress gradient effect in inhomogeneous materials , 2000 .

[32]  S. Spearing,et al.  Fracture mechanisms of the Strombus gigas conch shell: implications for the design of brittle laminates , 1996, Journal of Materials Science.

[33]  R. Mullen,et al.  A biomimetic example of brittle toughening: (I) steady state multiple cracking , 1996 .

[34]  N. Moody,et al.  Determining fracture toughness of vitreous silica glass , 1995 .

[35]  D Vashishth,et al.  Fracture toughness of human bone under tension. , 1995, Journal of biomechanics.

[36]  M. C. Shaw,et al.  Cracking and damage mechanisms in ceramic/metal multilayers , 1993 .

[37]  E. Gdoutos,et al.  Fracture Mechanics , 2020, Encyclopedic Dictionary of Archaeology.

[38]  A. Evans,et al.  On crack extension in ductile/brittle laminates , 1991 .

[39]  R. Ritchie Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack tip shielding☆ , 1988 .

[40]  John D. Currey,et al.  Mechanical properties of mother of pearl in tension , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[41]  Paul Roschger,et al.  From brittle to ductile fracture of bone , 2006, Nature materials.

[42]  D. J. Green,et al.  Prediction of crack propagation and fracture in residually stressed glass as a function of the stress profile and flaw size distribution , 2006 .

[43]  L. Moimas,et al.  Mechanical properties of bioactive glass 9-93 fibres. , 2006, Acta biomaterialia.

[44]  F. Fischer,et al.  On the fracture behavior of inhomogeneous materials––A case study for elastically inhomogeneous bimaterials , 2005 .

[45]  F. Fischer,et al.  Inhomogeneity effects on the crack driving force in elastic and elastic–plastic materials , 2003 .