Improved Iso-surface Extraction for Hybrid Rendering Application

Over the last 2 decades, constructing expert scene graphs to integrate volume rendering with other modeling techniques has attracted increasing attentions. This paper represents design of a flexible conversion between volume and wireframe models. It starts with classifying the volume data sets for maintaining the accuracy of this conversion. Two computer graphics algorithms, which work as indispensable components of conversion, will be explained subsequently. Based on this design, low interactive rate, complicated data processing and lots of artifacts will be abated. It is anticipated that this conversion will enhance the advantages of implementing volume visualization on consumer-grade platform.

[1]  Martin Kraus,et al.  Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[2]  David S. Ebert,et al.  Designing Effective Transfer Functions for Volume Rendering from Photographic Volumes , 2002, IEEE Trans. Vis. Comput. Graph..

[3]  Shai Ben-David,et al.  Stability of k -Means Clustering , 2007, COLT.

[4]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[5]  Ken Brodlie,et al.  Improving the Robustness and Accuracy of the Marching Cubes Algorithm for Isosurfacing , 2003, IEEE Trans. Vis. Comput. Graph..

[6]  Sim Heng Ong,et al.  Computational biomechanical modelling of the lumbar spine using marching-cubes surface smoothened finite element voxel meshing , 2005, Comput. Methods Programs Biomed..

[7]  Qian Xu,et al.  A Hybrid Rendering Framework for the Real-time Manipulation of Volume and Surface Models , 2009 .

[8]  Christopher DeCoro,et al.  Advanced interactive medical visualization on the GPU , 2008, J. Parallel Distributed Comput..

[9]  R.T. Whitaker,et al.  3D scan conversion of CSG models into distance volumes , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[10]  Kuo-Lung Wu,et al.  Mean shift-based clustering , 2007, Pattern Recognit..

[11]  V. Pascucci,et al.  Isosurface computation made simple: hardware acceleration, adaptive refinement and tetrahedral stripping , 2004, VISSYM'04.

[12]  David E. Breen,et al.  Constructive Cubes: CSG Evaluation For Display Using Discrete 3-D Scalar Data Sets , 1991, Eurographics.

[13]  David C. Banks,et al.  Counting cases in marching cubes: toward a generic algorithm for producing substitopes , 2003, IEEE Visualization, 2003. VIS 2003..

[14]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[15]  Roni Yagel,et al.  Rapid previewing via volume-based solid modeling , 1995, SMA '95.

[16]  Rüdiger Westermann,et al.  Efficiently using graphics hardware in volume rendering applications , 1998, SIGGRAPH.

[17]  Thomas Ertl,et al.  Accelerating Raycasting Utilizing Volume Segmentation of Industrial CT Data , 2009, TPCG.

[18]  Shiaofen Fang,et al.  Volumetric-Csg - A Model-Based Volume Visualization Approach , 1998 .

[19]  Gitta Domik,et al.  Real-Time Marching Cubes on the Vertex Shader , 2005, Eurographics.

[20]  Eric Andres,et al.  Tunnel‐Free Supercover 3D Polygons and Polyhedra , 1997, Comput. Graph. Forum.

[21]  Lipika Dey,et al.  A k-mean clustering algorithm for mixed numeric and categorical data , 2007, Data Knowl. Eng..

[22]  F. R. A. Hopgood,et al.  Advances in Computer Graphics IV , 1986, EurographicSeminars.

[23]  Ari Rappoport,et al.  Interactive Boolean operations for conceptual design of 3-D solids , 1997, SIGGRAPH.

[24]  S.F.F. Gibson,et al.  Using distance maps for accurate surface representation in sampled volumes , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[25]  P. Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, VVS.