CALYPSO structure prediction method and its wide application

[1]  Jian Lv,et al.  Stabilization of fullerene-like boron cages by transition metal encapsulation. , 2015, Nanoscale.

[2]  Jian Lv,et al.  Materials discovery via CALYPSO methodology , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  Yanming Ma,et al.  Superhard-driven search of the covalent network in the B3NO system , 2015 .

[4]  Yanchao Wang,et al.  Metallic icosahedron phase of sodium at terapascal pressures. , 2015, Physical review letters.

[5]  Yanchao Wang,et al.  N2H: a novel polymeric hydronitrogen as a high energy density material , 2015, 1503.03988.

[6]  Jun Li,et al.  Experimental and theoretical evidence of an axially chiral borospherene. , 2015, ACS nano.

[7]  Yanchao Wang,et al.  Superhard BC(3) in cubic diamond structure. , 2015, Physical review letters.

[8]  Quan Li,et al.  Exploring High-Pressure Structures of N2CO , 2014 .

[9]  T. Iitaka,et al.  Stabilization of H3 + in the high pressure crystalline structure of HnCl (n = 2–7) , 2014, Chemical science.

[10]  B38: an all-boron fullerene analogue. , 2014, Nanoscale.

[11]  Yanchao Wang,et al.  Pressure stabilization of long-missing bare C6 hexagonal rings in binary sesquicarbides , 2014 .

[12]  Lai‐Sheng Wang,et al.  Observation of an all-boron fullerene. , 2014, Nature chemistry.

[13]  Yanming Ma,et al.  High-pressure phase transition of cesium chloride and cesium bromide. , 2014, Physical chemistry chemical physics : PCCP.

[14]  Yanming Ma,et al.  Self-assembled ultrathin nanotubes on diamond (100) surface , 2014, Nature Communications.

[15]  Hui Wang,et al.  Metallization and superconductivity of BeH2 under high pressure. , 2014, The Journal of chemical physics.

[16]  Yanming Ma,et al.  The metallization and superconductivity of dense hydrogen sulfide. , 2014, The Journal of chemical physics.

[17]  Yanming Ma,et al.  Perspective: crystal structure prediction at high pressures. , 2014, The Journal of chemical physics.

[18]  G. Bussetti,et al.  Confinement effects in π-bonded chains at group IV semiconductor (111) surfaces , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Yanchao Wang,et al.  High-Pressure Phase Transitions and Structures of Topological Insulator BiTel , 2013 .

[20]  Yanming Ma,et al.  Theoretical study of the ground-state structures and properties of niobium hydrides under pressure , 2013 .

[21]  Yanming Ma,et al.  Structural evolution of carbon dioxide under high pressure. , 2013, Journal of the American Chemical Society.

[22]  Yanming Ma,et al.  Exploring High-Pressure Lithium Beryllium Hydrides: A New Chemical Perspective , 2013 .

[23]  Yanming Ma,et al.  Global structural optimization of tungsten borides. , 2013, Physical review letters.

[24]  Yanming Ma,et al.  First-principles structural design of superhard materials. , 2013, The Journal of chemical physics.

[25]  Yanming Ma,et al.  Pressure induced phase transitions in TiH2 , 2013 .

[26]  Yanming Ma,et al.  An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. , 2012, The Journal of chemical physics.

[27]  Yanming Ma,et al.  Cagelike diamondoid nitrogen at high pressures. , 2012, Physical review letters.

[28]  Yanming Ma,et al.  High-pressure structures and metallization of sodium chloride , 2012 .

[29]  Zhijian Wu,et al.  A novel low compressible and superhard carbon nitride: body-centered tetragonal CN2. , 2012, Physical chemistry chemical physics : PCCP.

[30]  Yanchao Wang,et al.  Particle-swarm structure prediction on clusters. , 2012, The Journal of chemical physics.

[31]  T. Acosta,et al.  Phase Transition in BCx system under High-Pressure and High-Temperature: Synthesis of Cubic Dense BC3 Nanostructured Phase , 2012 .

[32]  Jian Lv,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[33]  T. Iitaka,et al.  Superconductive sodalite-like clathrate calcium hydride at high pressures , 2012, Proceedings of the National Academy of Sciences.

[34]  Yanming Ma,et al.  Quasi-Molecular and Atomic Phases of Dense Solid Hydrogen , 2011, 1112.1174.

[35]  Hui Wang,et al.  High pressure partially ionic phase of water ice. , 2011, Nature communications.

[36]  Yanchao Wang,et al.  Spiral chain O4 form of dense oxygen , 2011, Proceedings of the National Academy of Sciences.

[37]  Yanming Ma,et al.  B2CO: A potential superhard material in the B-C-O system , 2011 .

[38]  Hui Wang,et al.  Metallic and superconducting gallane under high pressure , 2011 .

[39]  Yanming Ma,et al.  Superhard polymorphs of diamond-like BC7 , 2011 .

[40]  Hui Wang,et al.  Substitutional alloy of Bi and Te at high pressure. , 2011, Physical review letters.

[41]  S. Sinogeikin,et al.  Cold melting and solid structures of dense lithium , 2011 .

[42]  M I McMahon,et al.  Crystal structures of dense lithium: a metal-semiconductor-metal transition. , 2011, Physical review letters.

[43]  A. Oganov,et al.  How evolutionary crystal structure prediction works--and why. , 2011, Accounts of chemical research.

[44]  David C. Lonie,et al.  XtalOpt: An open-source evolutionary algorithm for crystal structure prediction , 2011, Comput. Phys. Commun..

[45]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[46]  Yanming Ma,et al.  Predicted novel high-pressure phases of lithium. , 2011, Physical review letters.

[47]  A N Kolmogorov,et al.  New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. , 2010, Physical review letters.

[48]  Yanming Ma,et al.  Crystal Structures and Exotic Behavior of Magnesium under Pressure , 2010 .

[49]  Wei Zhang,et al.  Pressure-induced superconductivity in topological parent compound Bi2Te3 , 2010, Proceedings of the National Academy of Sciences.

[50]  Jian Lv,et al.  Crystal structure prediction via particle-swarm optimization , 2010, 1008.3601.

[51]  N. Sata,et al.  No reactions observed in Xe‐Fe system even at Earth core pressures , 2010 .

[52]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[53]  Chris J Pickard,et al.  Dense low-coordination phases of lithium. , 2009, Physical review letters.

[54]  Yansun Yao,et al.  Structures of insulating phases of dense lithium. , 2009, Physical review letters.

[55]  Yanming Ma,et al.  Transparent dense sodium , 2009, Nature.

[56]  S. Woodley,et al.  Crystal structure prediction from first principles. , 2008, Nature materials.

[57]  Yanming Ma,et al.  High-pressure structures of lithium, potassium, and rubidium predicted by an ab initio evolutionary algorithm , 2008 .

[58]  Chris J. Pickard,et al.  Structure of phase III of solid hydrogen , 2007 .

[59]  T. Frauenheim,et al.  DFTB+, a sparse matrix-based implementation of the DFTB method. , 2007, The journal of physical chemistry. A.

[60]  Dmitry Yu. Zubarev,et al.  Global minimum structure searches via particle swarm optimization , 2007, J. Comput. Chem..

[61]  Alex Zunger,et al.  Global space-group optimization problem : Finding the stablest crystal structure without constraints , 2007 .

[62]  T. Çagin,et al.  Investigation of effective mass of carriers in Bi2Te3/Sb2Te3 superlattices via electronic structure studies on its component crystals , 2006 .

[63]  Gerbrand Ceder,et al.  Predicting crystal structure by merging data mining with quantum mechanics , 2006, Nature materials.

[64]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[65]  Matt Probert,et al.  A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction , 2006, cond-mat/0605066.

[66]  R. Maxwell,et al.  Pressure-Induced Polymerization of Carbon Monoxide: Disproportionation and Synthesis of an Energetic Lactonic Polymer , 2006 .

[67]  A. Jambon,et al.  Retention of Xenon in Quartz and Earth's Missing Xenon , 2005, Science.

[68]  J. Maurice Rojas,et al.  Practical conversion from torsion space to Cartesian space for in silico protein synthesis , 2005, J. Comput. Chem..

[69]  Russell J. Hemley,et al.  Spectroscopic evidence for broken-symmetry transitions in dense lithium up to megabar pressures , 2005 .

[70]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[71]  W. Evans,et al.  High-energy-density extended CO solid , 2005, Nature materials.

[72]  Reinhard Boehler,et al.  Single-bonded cubic form of nitrogen , 2004, Nature materials.

[73]  S. Goedecker Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. , 2004, The Journal of chemical physics.

[74]  S. Deemyad,et al.  Superconducting phase diagram of Li metal in nearly hydrostatic pressures up to 67 GPa. , 2003, Physical review letters.

[75]  E. Biscaia,et al.  The use of particle swarm optimization for dynamical analysis in chemical processes , 2002 .

[76]  Ho-kwang Mao,et al.  Superconductivity in Dense Lithium , 2002, Science.

[77]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[78]  B. Rao,et al.  Magic numbers in metallo-inorganic clusters: chromium encapsulated in silicon cages. , 2002, Physical review letters.

[79]  Friedhelm Bechstedt,et al.  Absolute surface energies of group-IV semiconductors: Dependence on orientation and reconstruction , 2002 .

[80]  Takashi Ikeda,et al.  Pressure-induced phase transition of hydrogen sulfide at low temperature: Role of the hydrogen bond and short S-S contacts , 2001 .

[81]  Vijay Kumar,et al.  Metal-encapsulated fullerenelike and cubic caged clusters of silicon. , 2001, Physical review letters.

[82]  F. Bechstedt,et al.  Origin of the different reconstructions of diamond, Si, and Ge(111) surfaces. , 2001, Physical review letters.

[83]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[84]  H. Hiura,et al.  Formation of metal-encapsulating Si cage clusters. , 2001, Physical review letters.

[85]  K. Syassen,et al.  New high-pressure phases of lithium , 2000, Nature.

[86]  Parrinello,et al.  Ab initio simulation of phase transitions and dissociation of H2S at high pressure , 2000, Physical review letters.

[87]  Kiyoyuki Terakura,et al.  Static structure and dynamical correlations in high pressure H2S , 1999 .

[88]  J. B. Neaton,et al.  Pairing in dense lithium , 1999, Nature.

[89]  A. Jephcoat Rare-gas solids in the Earth's deep interior , 1998, Nature.

[90]  A. Honda,et al.  CRYSTAL STRUCTURE OF HIGH-PRESSURE PHASE-IV SOLID HYDROGEN SULFIDE , 1998 .

[91]  Hiroshi Yamawaki,et al.  Structures of H 2 S: Phases I' and IV under high pressure , 1998 .

[92]  Bernd G. Pfrommer,et al.  Structure, Bonding, and Geochemistry of Xenon at High Pressures , 1997 .

[93]  Hiroshi Yamawaki,et al.  Pressure-Induced Molecular Dissociation and Metallization in Hydrogen-Bonded H 2 S Solid , 1997 .

[94]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[95]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[96]  J. C. Schön,et al.  First Step Towards Planning of Syntheses in Solid‐State Chemistry: Determination of Promising Structure Candidates by Global Optimization , 1996 .

[97]  Sasaki,et al.  High-pressure phase of solid hydrogen sulfide. , 1996, Physical review. B, Condensed matter.

[98]  D. M. Deaven,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[99]  S. Brooks,et al.  Optimization Using Simulated Annealing , 1995 .

[100]  Sasaki,et al.  X-ray-diffraction study of solid hydrogen sulfide under high pressure. , 1994, Physical review. B, Condensed matter.

[101]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[102]  R. Smalley,et al.  Fullerenes with metals inside , 1991 .

[103]  Hiroyasu Shimizu,et al.  Pressure‐induced phase transition in solid hydrogen sulfide at 11 GPa , 1991 .

[104]  M. J. Collins,et al.  Deuteron and sulfur-33 NMR line-shape studies of the molecular motion in the liquid and solid phases of hydrogen sulfide and the solid II phase of hydrogen selenide , 1989 .

[105]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[106]  E. Anders,et al.  Trapping of xenon in ice - Implications for the origin of the earth's noble gases , 1984 .

[107]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[108]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[109]  J. L. Dye,et al.  Synthesis of cesium 18-crown-6: the first single-crystal electride? , 1982 .

[110]  T. Owen,et al.  Mars and Earth: Origin and Abundance of Volatiles , 1977, Science.

[111]  F. Giustino Materials modelling using density functional theory :properties and predictions , 2014 .

[112]  L. Vočadlo New Views of the Earth’s Inner Core from Computational Mineral Physics , 2009 .

[113]  J. Gale,et al.  The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation , 1999 .

[114]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[115]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[116]  R. Pepin Origin of Noble Gases in the Terrestrial Planets , 1992 .

[117]  James E. Butler,et al.  Diamond Chemical Vapor Deposition , 1991 .

[118]  A. Fitch,et al.  The solid phases of deuterium sulphide by powder neutron diffraction , 1990 .

[119]  J. Matsuda,et al.  Noble gases in silica and their implication for the terrestrial “missing” Xe , 1989 .

[120]  G. Sill,et al.  Ice clathrate as a possible source of the atmospheres of the terrestrial planets , 1978 .

[121]  Universities of Leeds, Sheffield and York , 2022 .