A comparative study of the numerical scales and the prioritization methods in AHP

Abstract In the analytic hierarchy process (AHP), a decision maker first gives linguistic pairwise comparisons, then obtains numerical pairwise comparisons by selecting certain numerical scale to quantify them, and finally derives a priority vector from the numerical pairwise comparisons. In particular, the validity of this decision-making tool relies on the choice of numerical scale and the design of prioritization method. By introducing a set of concepts regarding the linguistic variables and linguistic pairwise comparison matrices (LPCMs), and by defining the deviation measures of LPCMs, we present two performance measure algorithms to evaluate the numerical scales and the prioritization methods. Using these performance measure algorithms, we compare the most common numerical scales (the Saaty scale, the geometrical scale, the Ma–Zheng scale and the Salo–Hamalainen scale) and the prioritization methods (the eigenvalue method and the logarithmic least squares method). In addition, we also discuss the parameter of the geometrical scale, develop a new prioritization method, and construct an optimization model to select the appropriate numerical scales for the AHP decision makers. The findings in this paper can help the AHP decision makers select suitable numerical scales and prioritization methods.

[1]  William J. Hurley,et al.  Transitive calibration of the AHP verbal scale , 1999, Eur. J. Oper. Res..

[2]  Francisco Herrera,et al.  A Sequential Selection Process in Group Decision Making with a Linguistic Assessment Approach , 1995, Inf. Sci..

[3]  P. Yu,et al.  Estimating criterion weights using eigenvectors: A comparative study , 1987 .

[4]  Eng Ung Choo,et al.  A common framework for deriving preference values from pairwise comparison matrices , 2004, Comput. Oper. Res..

[5]  J. Barzilai Deriving weights from pairwise comparison matrices , 1997 .

[6]  T. Saaty Eigenvector and logarithmic least squares , 1990 .

[7]  Thomas L. Saaty,et al.  Decision-making with the AHP: Why is the principal eigenvector necessary , 2003, Eur. J. Oper. Res..

[8]  Evangelos Triantaphyllou,et al.  An evaluation of the eigenvalue approach for determining the membership values in fuzzy sets , 1990 .

[9]  James S. Dyer,et al.  A clarification of “remarks on the analytic hierarchy process” , 1990 .

[10]  Yuuji Satoh,et al.  AN EVALUATION OF JUDGMENT SCALE IN THE ANALYTIC HIERARCHY PROCESS , 1999 .

[11]  G. Crawford,et al.  A note on the analysis of subjective judgment matrices , 1985 .

[12]  F. Lootsma SCALE SENSITIVITY IN THE MULTIPLICATIVE AHP AND SMART , 1993 .

[13]  L. Thurstone A law of comparative judgment. , 1994 .

[14]  L. S. Ganesh,et al.  A simulation-based evaluation of the approximate and the exact eigenvector methods employed in AHP , 1996 .

[15]  T. L. Saaty A Scaling Method for Priorities in Hierarchical Structures , 1977 .

[16]  Yin-Feng Xu,et al.  Consistency Measures of Linguistic Preference Relations and Its Properties in Group Decision Making , 2006, FSKD.

[17]  Sushil Kumar,et al.  Analytic hierarchy process: An overview of applications , 2006, Eur. J. Oper. Res..

[18]  Valerie Belton,et al.  On a short-coming of Saaty's method of analytic hierarchies , 1983 .

[19]  Xu Ze,et al.  A Simulation-Based Evaluation of Several Scales in the Analytic Hierarchy Process , 2000 .

[20]  M. Bohanec,et al.  The Analytic Hierarchy Process , 2004 .

[21]  T. Saaty,et al.  Ranking by Eigenvector Versus Other Methods in the Analytic Hierarchy Process , 1998 .

[22]  T. Saaty Highlights and critical points in the theory and application of the Analytic Hierarchy Process , 1994 .

[23]  T. Saaty An exposition of the AHP in reply to the paper “remarks on the analytic hierarchy process” , 1990 .

[24]  Francisco Herrera,et al.  Theory and Methodology Choice functions and mechanisms for linguistic preference relations , 2000 .

[25]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[26]  Bojan Srdjevic,et al.  Combining different prioritization methods in the analytic hierarchy process synthesis , 2005, Comput. Oper. Res..

[27]  Francisco Herrera,et al.  Some issues on consistency of fuzzy preference relations , 2004, Eur. J. Oper. Res..

[28]  Jiang Yan-ping A judgment method for the satisfying consistency of linguistic judgment matrix , 2004 .

[29]  Bodo Glaser Fundamentals of Decision Making , 2002 .

[30]  R. Jiang,et al.  Scale transitivity in the AHP , 2003, J. Oper. Res. Soc..

[31]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[32]  F. Zahedi A simulation study of estimation methods in the analytic hierarchy process , 1986 .

[33]  R. Hämäläinen,et al.  On the measurement of preferences in the analytic hierarchy process , 1997 .

[34]  Zeshui Xu Deviation measures of linguistic preference relations in group decision making , 2005 .

[35]  Luis G. Vargas,et al.  The theory of ratio scale estimation: Saaty's analytic hierarchy process , 1987 .

[36]  J. Dyer Remarks on the analytic hierarchy process , 1990 .

[37]  J. Pérez Some comments on Saaty's AHP , 1995 .

[38]  Luis G. Vargas An overview of the analytic hierarchy process and its applications , 1990 .

[39]  Saul I. Gass,et al.  The Analytic Hierarchy Process - An Exposition , 2001, Oper. Res..