From Connectivity to Advanced Internet Services: A Comprehensive Review of Small Satellites Communications and Networks

Recently, the availability of innovative and affordable COTS (Commercial Off-The-Shelf) technological solutions and the ever-improving results of microelectronics and microsystems technologies have enabled the design of ever smaller yet ever more powerful satellites. The emergence of very capable small satellites heralds an era of new opportunities in the commercial space market. Initially applied only to scientific missions, Earth observation and remote sensing, small satellites are now being deployed to support telecommunications services. This review paper examines the operational features of small satellites that contribute to their success. An overview of recent advances and development trends in the field of small satellites is provided, with a special focus on telecommunication aspects such as the use of higher frequency bands, optical communications, new protocols, and advanced architectures.

[1]  Richard C. Reinhart,et al.  Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station , 2014 .

[2]  Robert Bedington,et al.  SpooQySats: CubeSats to demonstrate quantum key distribution technologies , 2018 .

[3]  Ke Xiao,et al.  Study of Physical Layer Security in mmWave Satellite Networks , 2018, 2018 IEEE International Conference on Communications (ICC).

[4]  Stephen Farrell,et al.  Licklider Transmission Protocol - Specification , 2008, RFC.

[5]  Vinton G. Cerf,et al.  Delay-tolerant networking: an approach to interplanetary Internet , 2003, IEEE Commun. Mag..

[6]  Tommaso Rossi,et al.  EHF for Satellite Communications: The New Broadband Frontier , 2011, Proceedings of the IEEE.

[7]  Joao Barros,et al.  How feasible is network coding in current satellite systems? , 2010, 2010 5th Advanced Satellite Multimedia Systems Conference and the 11th Signal Processing for Space Communications Workshop.

[8]  R. Ursin,et al.  Quantum Communication Uplink to a 3U CubeSat: Feasibility & Design , 2017 .

[9]  F. Heine,et al.  Alphasat-Sentinel-1A optical inter-satellite links: run-up for the European data relay satellite system , 2016, SPIE LASE.

[10]  Richard E. Hodges,et al.  The Mars Cube One deployable high gain antenna , 2016, 2016 IEEE International Symposium on Antennas and Propagation (APSURSI).

[11]  Artur Gaysin,et al.  Survey of modulation and coding schemes for application in CubeSat systems , 2017, 2017 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINKHROINFO).

[12]  Nei Kato,et al.  An Efficient Data Transfer Method for Distributed Storage System over Satellite Networks , 2013, 2013 IEEE 77th Vehicular Technology Conference (VTC Spring).

[13]  Ramón Martínez Rodríguez-Osorio,et al.  Survey of Inter-Satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View , 2016, IEEE Communications Surveys & Tutorials.

[14]  R. Hodges,et al.  CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for Earth Science Missions , 2016, IEEE Transactions on Antennas and Propagation.

[15]  Radhika Radhakrishnan,et al.  Software Defined Radio implementation of DS-CDMA in inter-satellite communications for small satellites , 2015, 2015 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE).

[16]  Mario Marchese,et al.  Small satellites and CubeSats: Survey of structures, architectures, and protocols , 2018, Int. J. Satell. Commun. Netw..

[17]  Antonio Iera,et al.  Experimental Missions in W-Band: A Small LEO Satellite Approach , 2008, IEEE Systems Journal.

[18]  Todd S. Rose,et al.  Optical communications downlink from a 1.5U Cubesat: OCSD program , 2019, International Conference on Space Optics.

[19]  Barry G. Evans,et al.  1945–2010: 65 Years of Satellite History From Early Visions to Latest Missions , 2011, Proceedings of the IEEE.

[20]  Piero Tognolatti,et al.  Software Defined Radio: A key technology for flexibility and reconfigurability in space applications , 2014, 2014 IEEE Metrology for Aerospace (MetroAeroSpace).

[21]  Shui Yu,et al.  SERvICE: A Software Defined Framework for Integrated Space-Terrestrial Satellite Communication , 2018, IEEE Transactions on Mobile Computing.

[22]  Andrew Kurzrok,et al.  Evaluating the Risk Posed by Propulsive Small Satellites with Unencrypted Communications Channels to High-Value Orbital Regimes , 2018 .

[23]  A. Jebril,et al.  IKNOW Mission: Payload Design for In Orbit Test of W Band Technology , 2008, 2008 IEEE Aerospace Conference.

[24]  Vignesh Manohar,et al.  For Satellites, Think Small, Dream Big: A review of recent antenna developments for CubeSats. , 2017, IEEE Antennas and Propagation Magazine.

[25]  Jin Kim,et al.  Ka-Band for CubeSats , 2015 .

[26]  Joseph Casas,et al.  The Use of Field Programmable Gate Arrays (FPGA) in Small Satellite Communication Systems , 2015 .

[27]  Marius Feldmann,et al.  Simulation Environment for Network Coding Research in Ring Road Networks , 2017, 2017 6th International Conference on Space Mission Challenges for Information Technology (SMC-IT).

[28]  Eric Anderson,et al.  Planetary Resources—The Asteroid Mining Company , 2013 .

[29]  Martin N. Sweeting,et al.  Modern Small Satellites-Changing the Economics of Space , 2018, Proceedings of the IEEE.

[30]  Rainer Sandau,et al.  Small Satellite Missions for Earth Observation - New Developments and Trends , 2010 .

[31]  M. Ruggieri,et al.  Future space-based communications infrastructures based on High Throughput Satellites and Software Defined Networking , 2015, 2015 IEEE International Symposium on Systems Engineering (ISSE).

[32]  Sara Spangelo,et al.  Planetary CubeSats come of age , 2015 .

[33]  Tomaso de Cola,et al.  Future trends in broadband satellite communications: information centric networks and enabling technologies , 2015, Int. J. Satell. Commun. Netw..

[34]  Yoshiyuki Kawamura,et al.  Overview and operations of CubeSat FITSAT-1 (NIWAKA) , 2013, 2013 6th International Conference on Recent Advances in Space Technologies (RAST).

[35]  Fatemeh Afghah,et al.  Intersatellite Communication System Based on Visible Light , 2018, IEEE Transactions on Aerospace and Electronic Systems.

[36]  Rainer Sandau,et al.  Small Satellite Missions for Earth Observation , 2010 .

[37]  Mario Marchese,et al.  DTN-Based Nanosatellite Architecture and Hot Spot Selection Algorithm for Remote Areas Connection , 2018, IEEE Transactions on Vehicular Technology.

[38]  Joel Krajewski,et al.  MarCO: CubeSats to Mars in 2016 , 2015 .

[39]  P. T. Thompson,et al.  50 years of civilian satellite communications: from imagination to reality , 1995 .

[40]  Les Johnson,et al.  Near Earth Asteroid (NEA) Scout , 2014 .

[41]  R. Ursin,et al.  Nanobob: a CubeSat mission concept for quantum communication experiments in an uplink configuration , 2018, EPJ Quantum Technology.

[42]  Igor Bisio,et al.  Satellite Communications Supporting Internet of Remote Things , 2016, IEEE Internet of Things Journal.

[43]  Tomaso de Cola,et al.  Reliability Options for Data Communications in the Future Deep-Space Missions , 2011, Proceedings of the IEEE.

[44]  S. Morosi,et al.  Flexible cubesat-based system for data broadcasting , 2018, IEEE Aerospace and Electronic Systems Magazine.

[45]  Z. Sodnik,et al.  Overview of international experiment campaign with small optical transponder (SOTA) , 2015, 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS).

[46]  Christian Fuchs,et al.  Performance Estimation of Optical LEO Downlinks , 2018, IEEE Journal on Selected Areas in Communications.

[47]  T. Rawlik,et al.  ADS-B over SatelliteThe world’s first ADS-B receiver in Space , 2014 .

[48]  Mohsen Guizani,et al.  Integration of Satellite and 5G Networks , 2018, IEEE Netw..

[49]  Enrico Del Re,et al.  Experimental CubeSat-based Networkfor Alert Messages Broadcasting , 2018, J. Mobile Multimedia.

[50]  Masahito Hayashi,et al.  Physical Layer Security for RF Satellite Channels in the Finite-Length Regime , 2018, IEEE Transactions on Information Forensics and Security.

[51]  Kenneth S. Andrews,et al.  Optical payload for lasercomm science (OPALS) link validation during operations from the ISS , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[52]  Bryan S. Robinson,et al.  Overview and results of the Lunar Laser Communication Demonstration , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[53]  Kyle W. Ingols Design for security: Guidelines for efficient, secure small satellite computation , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[54]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[55]  Ali J. Ghandour,et al.  Design of a Lebanese Cube Satellite , 2018 .

[56]  D. Babb,et al.  Security issues for downloaded code in mobile phones , 2002 .

[57]  Timothy D. Drysdale,et al.  Inter-CubeSat communication with V-band “Bull's eye” antenna , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[58]  Raymond W. Yeung Network Coding: A Historical Perspective , 2011, Proceedings of the IEEE.

[59]  Yahya Rahmat-Samii,et al.  A spline-profiled conical horn antenna assembly optimized for deployable Ka-band offset reflector antennas in CubeSats , 2016, 2016 IEEE International Symposium on Antennas and Propagation (APSURSI).

[60]  Scott C. Burleigh,et al.  Bundle Protocol Specification , 2007, RFC.

[61]  Martin Sweeting,et al.  Very-Small-Satellite Design for Distributed Space Missions , 2007 .

[62]  Francesco Chiti,et al.  An Optimized Multicast Scheme for Data Burst Dissemination Over Satellite Links , 2016, IEEE Transactions on Vehicular Technology.