Taxonomic variation in the Mycobacterium fortuitum third biovariant complex: description of Mycobacterium boenickei sp. nov., Mycobacterium houstonense sp. nov., Mycobacterium neworleansense sp. nov. and Mycobacterium brisbanense sp. nov. and recognition of Mycobacterium porcinum from human clinical

The Mycobacterium fortuitum third biovariant complex (sorbitol-negative and sorbitol-positive) contains unnamed taxa first characterized in 1991. These organisms can cause respiratory infections, a spectrum of soft tissue and skeletal infections, bacteraemia and disseminated disease. To evaluate this group of organisms, clinical reference isolates and the type strains of M. fortuitum third biovariant complex sorbitol-negative (n = 21), M. fortuitum third biovariant complex sorbitol-positive (n = 3), M. fortuitum (n = 3), Mycobacterium peregrinum (pipemidic acid-susceptible) (n = 1), Mycobacterium porcinum (n = 1), Mycobacterium senegalense (n = 2) and Mycobacterium septicum (n = 1) were characterized by using conventional phenotypic (morphological, physiological and antimicrobial susceptibilities), chemotaxonomic (HPLC and cellular fatty acids) and genotypic [RFLP of the rRNA gene (ribotyping), PCR-RFLP of a 439 bp segment of the 65 kDa hsp gene (PCR restriction analysis) and 16S rRNA gene sequence] analysis, DNA G + C content and DNA-DNA relatedness analyses. The results of these studies indicated that the strains comprised M. porcinum (n = 13), M. septicum (n = 1) and four novel closely related genetic groups within the M. fortuitum third biovariant complex: Mycobacterium boenickei sp. nov. (n = 6), Mycobacterium houstonense sp. nov. (n = 2), Mycobacterium neworleansense sp. nov. (n = 1) and Mycobacterium brisbanense sp. nov. (n = 1), with type strains ATCC 49935T (= W5998T = DSM 44677T), ATCC 49403T (= W5198T = DSM 44676T) ATCC 49404T (= W6705T = DSM 44679T) and ATCC 49938T (= W6743T = DSM 44680T), respectively.

[1]  R. Wallace,,et al.  Clinical disease, drug susceptibility, and biochemical patterns of the unnamed third biovariant complex of Mycobacterium fortuitum. , 1991, The Journal of infectious diseases.

[2]  M. Tsukamura,et al.  Mycobacterium porcinum sp. nov., a Porcine Pathogen , 1983 .

[3]  H. Noller,et al.  Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[4]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[5]  A. F. Yassin,et al.  Cellular fatty acid methyl ester profiles as a tool in the differentiation of members of the genus Mycobacterium. , 1993, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[6]  M. McNeil,et al.  Identification and epidemiological typing of clinical and environmental isolates of the genus Rhodococcus with use of a digoxigenin-labeled rDNA gene probe. , 1992, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[7]  A. Steigerwalt,et al.  Classification of citrobacteria by DNA hybridization: designation of Citrobacter farmeri sp. nov., Citrobacter youngae sp. nov., Citrobacter braakii sp. nov., Citrobacter werkmanii sp. nov., Citrobacter sedlakii sp. nov., and three unnamed Citrobacter genomospecies. , 1993, International journal of systematic bacteriology.

[8]  J. Grange,et al.  Reevaluation of Mycobacterium fortuitum (Synonym: Mycobacterium ranae) , 1974 .

[9]  W M Barnes,et al.  PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Wallace,,et al.  Rapid identification of clinically significant species and taxa of aerobic actinomycetes, including Actinomadura, Gordona, Nocardia, Rhodococcus, Streptomyces, and Tsukamurella isolates, by DNA amplification and restriction endonuclease analysis , 1997, Journal of clinical microbiology.

[11]  Mary Jane Ferraro,et al.  Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically : approved standard , 2000 .

[12]  W. A. Clark,et al.  Identification of unusual pathogenic gram-negative aerobic and facultatively anaerobic bacteria , 1985 .

[13]  F. Rainey,et al.  Tsukamurella inchonensis sp. nov. , 1995, International journal of systematic bacteriology.

[14]  A. Steigerwalt,et al.  Mycobacterium septicum sp. nov., a new rapidly growing species associated with catheter-related bacteraemia. , 2000, International journal of systematic and evolutionary microbiology.

[15]  R. Wallace,,et al.  PCR amplification and restriction endonuclease analysis of a 65-kilodalton heat shock protein gene sequence for taxonomic separation of rapidly growing mycobacteria , 1995, Journal of clinical microbiology.

[16]  O. Kandler,et al.  International Committee on Systematic Bacteriology: announcement of the report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. , 1987, Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology.

[17]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[18]  T. Scheidl,et al.  Automated fluorescent dye-terminator sequencing of G+C-rich tracts with the aid of dimethyl sulfoxide. , 1995, BioTechniques.

[19]  A. L. Vestal Procedures for the isolation and identification of mycobacteria , 1975 .

[20]  E. Baron,et al.  Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria , 1997 .

[21]  F. Grimont,et al.  Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. , 1986, Annales de l'Institut Pasteur. Microbiology.

[22]  Erko Stackebrandt,et al.  Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology , 1994 .

[23]  J. Wolfe,et al.  Necessity of Quality-Controlled 16S rRNA Gene Sequence Databases: Identifying Nontuberculous Mycobacterium Species , 2002, Journal of Clinical Microbiology.

[24]  J. Kilburn,et al.  Identification of Mycobacterium avium complex strains and some similar species by high-performance liquid chromatography , 1992, Journal of clinical microbiology.

[25]  R. Good,et al.  Spectrum of disease due to rapidly growing mycobacteria. , 1983, Reviews of infectious diseases.

[26]  M. Takeuchi,et al.  Gordonia rhizosphera sp. nov. isolated from the mangrove rhizosphere. , 1998, International journal of systematic bacteriology.

[27]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[28]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[29]  A. Steigerwalt,et al.  Escherichia vulneris: a New Species of Enterobacteriaceae Associated with Human Wounds , 1982, Journal of clinical microbiology.

[30]  E. Böttger,et al.  Genotypic identification of mycobacteria by nucleic acid sequence determination: report of a 2-year experience in a clinical laboratory , 1993, Journal of clinical microbiology.

[31]  S. Jeffery Evolution of Protein Molecules , 1979 .

[32]  Frank,et al.  Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis , 1993, Journal of clinical microbiology.

[33]  R. Wallace,,et al.  Clinical Application of PCR-Restriction Enzyme Pattern Analysis for Rapid Identification of Aerobic Actinomycete Isolates , 1998, Journal of Clinical Microbiology.

[34]  J. Kilburn,et al.  Identification of mycobacteria by high-performance liquid chromatography , 1991, Journal of clinical microbiology.

[35]  D. Durack,et al.  Disseminated infection with rapidly growing mycobacteria. , 1993, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[36]  R. Good,et al.  Identification of clinically significant Mycobacterium fortuitum complex isolates , 1981, Journal of clinical microbiology.

[37]  E. Böttger,et al.  Genetic heterogeneity within Mycobacterium fortuitum complex species: genotypic criteria for identification , 1992, Journal of clinical microbiology.

[38]  D. Berd Laboratory Identification of Clinically Important Aerobic Actinomycetes , 1973, Applied microbiology.

[39]  A. Steigerwalt,et al.  Vibrio furnissii (formerly aerogenic biogroup of Vibrio fluvialis), a new species isolated from human feces and the environment , 1983, Journal of clinical microbiology.

[40]  T Ezaki,et al.  Proposal of Mycobacterium peregrinum sp. nov., nom. rev., and elevation of Mycobacterium chelonae subsp. abscessus (Kubica et al.) to species status: Mycobacterium abscessus comb. nov. , 1992, International journal of systematic bacteriology.

[41]  E. Asheshov,et al.  International Committee on Systematic Bacteriology: Subcommittee on the Phage-Typing of Staphylococci , 1975 .

[42]  J. Waitz Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically , 1990 .

[43]  M. Mandel,et al.  Correlation of Melting Temperature and Cesium Chloride Buoyant Density of Bacterial Deoxyribonucleic Acid , 1970, Journal of bacteriology.

[44]  B. Swaminathan,et al.  Restriction fragment length polymorphisms in the ribosomal genes for species identification and subtyping of aerotolerant Campylobacter species , 1991, Journal of clinical microbiology.

[45]  M. Loeffelholz,et al.  Method for improved extraction of DNA from Nocardia asteroides , 1989, Journal of clinical microbiology.