A New Method for Hail Detection from the GPM Constellation: A Prospect for a Global Hailstorm Climatology

[1]  Bradley M. Muller,et al.  Simulations of the Effects of Water Vapor, Cloud Liquid Water, and Ice on AMSU Moisture Channel Brightness Temperatures , 1994 .

[2]  José Luis Sánchez,et al.  Daytime identification of summer hailstorm cells from MSG data , 2013 .

[3]  Giulia Panegrossi,et al.  Observational analysis of an exceptionally intense hailstorm over the Mediterranean area: Role of the GPM Core Observatory , 2017 .

[4]  G. Skofronick-Jackson The Global Precipitation Measurement (GPM) Mission , 2020, IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium.

[5]  Steven J. Goodman,et al.  Three Years of TRMM Precipitation Features. Part I: Radar, Radiometric, and Lightning Characteristics , 2005 .

[6]  David P. Yorty,et al.  WHERE ARE THE MOST INTENSE THUNDERSTORMS ON EARTH , 2006 .

[7]  Chris Kidd,et al.  The 183-WSL fast rain rate retrieval algorithm. Part II: Validation using ground radar measurements , 2013 .

[8]  E. M. Murillo,et al.  Severe Hail Fall and Hailstorm Detection Using Remote Sensing Observations. , 2019, Journal of applied meteorology and climatology.

[9]  D. Cecil,et al.  Signatures of Hydrometeor Species from Airborne Passive Microwave Data for Frequencies 10–183 GHz , 2015 .

[10]  Qinghong Zhang,et al.  On the Detection of Hail Using Satellite Passive Microwave Radiometers and Precipitation Radar , 2017 .

[11]  A. Hou,et al.  The Global Precipitation Measurement Mission , 2014 .

[12]  Daniel J. Cecil,et al.  Passive Microwave Brightness Temperatures as Proxies for Hailstorms , 2009 .

[13]  Jungang Miao,et al.  Sensitivity of microwave brightness temperatures to hydrometeors in a tropical deep convective cloud system at 89–190 GHz , 2005 .

[14]  D. Cecil,et al.  Constructing a Multifrequency Passive Microwave Hail Retrieval and Climatology in the GPM Domain , 2019, Journal of Applied Meteorology and Climatology.

[15]  Simone Tanelli,et al.  Hail-Detection Algorithm for the GPM Core Observatory Satellite Sensors , 2017 .

[16]  Merritt N. Deeter,et al.  Modeling of Submillimeter Passive Remote Sensing of Cirrus Clouds , 1998 .

[17]  D. Santek,et al.  Severe Storm Identification with Satellite Microwave Radiometry: An Initial Investigation with Nimbus-7 SMMR Data , 1987 .

[18]  Edward J. Kim,et al.  S‐NPP ATMS instrument prelaunch and on‐orbit performance evaluation , 2014 .

[19]  David A. Santek,et al.  Measuring the Global Distribution of Intense Convection over Land with Passive Microwave Radiometry , 1985 .

[20]  D. Cecil,et al.  Toward a Global Climatology of Severe Hailstorms as Estimated by Satellite Passive Microwave Imagers , 2012 .

[21]  Ralph R. Ferraro,et al.  Hailstorm Detection by Satellite Microwave Radiometers , 2020, Remote. Sens..

[22]  Ralph Ferraro,et al.  A prototype hail detection algorithm and hail climatology developed with the advanced microwave sounding unit (AMSU) , 2015 .

[23]  Vincenzo Levizzani,et al.  The 183-WSL fast rain rate retrieval algorithm: Part I: Retrieval design , 2011 .

[24]  R. Ferraro,et al.  Microwave Sensors, Imagers and Sounders , 2020 .

[25]  Pieter Groenemeijer,et al.  Overview of ESSL's severe convective storms research using the European Severe Weather Database ESWD , 2009 .

[26]  Ralf Bennartz,et al.  Optimal Convolution of AMSU-B to AMSU-A , 2000 .

[27]  Ye Hong,et al.  Design and Evaluation of the First Special Sensor Microwave Imager/Sounder , 2008, IEEE Transactions on Geoscience and Remote Sensing.