Multiresolution modeling and simulation of an air-ground combat application

The High Level Architecture (HLA) establishes a common modeling and simulation framework facilitating interoperability and reuse of simulation components. Since 1996, ONERA (French Aeronautics and Space Research Centre) carries out several studies on HLA in order to gain a better understanding of the underlying mechanisms of HLA implementations. The first critical step of this initiative was to develop our own RTI from the HLA specifications. In order to evaluate the cost of making a transition from legacy simulations to HLA, we first developed an HLA federation simulating an air-ground combat involving a set of aircraft's engaged against a surface to air defense system. Current studies on HLA distributed simulation include security, WAN simulations and multiresolution. Conventional simulations represent entities at just one single level of resolution. Multiresolution representation of entities consists in maintaining multiple and concurrent representations of entities. In this paper we address the problem of how HLA services may allow to achieve multiresolution modeling and simulation. Our goal is not to provide a general framework as a basis for designing simulations of entities at different levels of resolution concurrently. We focus on experience feedback we have obtained by migrating a single level resolution HLA federation to a multi-level resolution federation. The selected application is an air-ground combat simulation involving aggregated patrols of aircraft's engaged against a surface to air defense system. In this paper, we briefly describe the air-ground combat simulation application. We then detail the multiresolution representation of entities (patrols and aircraft's), and discuss the chosen mechanisms allowing triggering aggregation from an entity-level representation, and conversely, triggering disaggregation from an aggregate representation. We focus on the HLA services we have selected to maintain several levels of representation concurrently and on methodological issues in designing multiresolution HLA simulations. We have tackled some difficulties and we propose a new HLA service that should make easier the user's task. This multiresolution management service can be added to our RTI or written by using existing HLA services. Finally, future trends are discussed.