Robust 4C-seq data analysis to screen for regulatory DNA interactions

Regulatory DNA elements can control the expression of distant genes via physical interactions. Here we present a cost-effective methodology and computational analysis pipeline for robust characterization of the physical organization around selected promoters and other functional elements using chromosome conformation capture combined with high-throughput sequencing (4C-seq). Our approach can be multiplexed and routinely integrated with other functional genomics assays to facilitate physical characterization of gene regulation.

[1]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[2]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[3]  K. Sandhu,et al.  Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions , 2006, Nature Genetics.

[4]  J. Lawrence,et al.  The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules , 2011, Nature Structural &Molecular Biology.

[5]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[6]  H. Bussemaker,et al.  Global Chromatin Domain Organization of the Drosophila Genome , 2008, PLoS genetics.

[7]  Lee E. Edsall,et al.  A map of the cis-regulatory sequences in the mouse genome , 2012, Nature.

[8]  W. D. Laat,et al.  An evaluation of 3C-based methods to capture DNA interactions , 2007, Nature Methods.

[9]  Hsu-hsin Chen,et al.  An ES-Like Pluripotent State in FGF-Dependent Murine iPS cells , 2010, PloS one.

[10]  Vip Viprakasit,et al.  Adventitious changes in long-range gene expression caused by polymorphic structural variation and promoter competition , 2009, Proceedings of the National Academy of Sciences.

[11]  A. Tanay,et al.  Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture , 2011, Nature Genetics.

[12]  Lukas Wagner,et al.  A Greedy Algorithm for Aligning DNA Sequences , 2000, J. Comput. Biol..

[13]  B. Steensel,et al.  Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C) , 2006, Nature Genetics.

[14]  D. Higgs,et al.  Long‐range chromosomal interactions regulate the timing of the transition between poised and active gene expression , 2007 .

[15]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[16]  C. Nusbaum,et al.  Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. , 2006, Genome research.

[17]  W. D. Laat,et al.  A Decade of 3c Technologies: Insights into Nuclear Organization References , 2022 .

[18]  L. Di,et al.  Active Chromatin Hub of the Mouse α-Globin Locus Forms in a Transcription Factory of Clustered Housekeeping Genes , 2006, Molecular and Cellular Biology.

[19]  W. V. van IJcken,et al.  The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. , 2011, Genes & development.

[20]  H. Schöler,et al.  Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. , 1996, Development.

[21]  Erik Splinter,et al.  Looping and interaction between hypersensitive sites in the active beta-globin locus. , 2002, Molecular cell.

[22]  A. Tanay,et al.  Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome , 2012, Cell.

[23]  F. Grosveld,et al.  β-Globin Active Chromatin Hub Formation in Differentiating Erythroid Cells and in p45 NF-E2 Knock-out Mice* , 2007, Journal of Biological Chemistry.

[24]  Raymond K. Auerbach,et al.  Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation , 2012, Cell.

[25]  Wouter de Laat,et al.  CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. , 2006, Genes & development.