How Critical Is Fibrous Cap Thickness to Carotid Plaque Stability?: A Flow–Plaque Interaction Model

Background and Purpose— Acute cerebral ischemic events are associated with rupture of vulnerable carotid atheroma and subsequent thrombosis. Factors such as luminal stenosis and fibrous cap thickness have been thought to be important risk factors for plaque rupture. We used a flow–structure interaction model to simulate the interaction between blood flow and atheromatous plaque to evaluate the effect of the degree of luminal stenosis and fibrous cap thickness on plaque vulnerability. Methods— A coupled nonlinear time-dependent model with a flow–plaque interaction simulation was used to perform flow and stress/strain analysis in a stenotic carotid artery model. The stress distribution within the plaque and the flow conditions within the vessel were calculated for every case when varying the fibrous cap thickness from 0.1 to 2 mm and the degree of luminal stenosis from 10% to 95%. A rupture stress of 300 kPa was chosen to indicate a high risk of plaque rupture. A 1-sample t test was used to compare plaque stresses with the rupture stress. Results— High stress concentrations were found in the plaques in arteries with >70% degree of stenosis. Plaque stresses in arteries with 30% to 70% stenosis increased exponentially as fibrous cap thickness decreased. A decrease of fibrous cap thickness from 0.4 to 0.2 mm resulted in an increase of plaque stress from 141 to 409 kPa in a 40% degree stenotic artery. Conclusions— There is an increase in plaque stress in arteries with a thin fibrous cap. The presence of a moderate carotid stenosis (30% to 70%) with a thin fibrous cap indicates a high risk for plaque rupture. Patients in the future may be risk stratified by measuring both fibrous cap thickness and luminal stenosis.

[1]  Roger D. Kamm,et al.  The Impact of Calcification on the Biomechanical Stability of Atherosclerotic Plaques , 2001, Circulation.

[2]  Martin J Graves,et al.  Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. , 2006, Journal of biomechanics.

[3]  Gerard Pasterkamp,et al.  Remodelling of Coronary Arteries , 2002 .

[4]  Chun Yuan,et al.  In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. , 2002 .

[5]  R. Peto,et al.  Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial , 2004, The Lancet.

[6]  G. Sicard MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70–99%) or mild (0–29%) carotid stenosis: European Carotid Surgery Trialist' Collaborative Group. Lancet 1991;337:1235-43 , 1992 .

[7]  Dalin Tang,et al.  3D MRI-Based Multicomponent FSI Models for Atherosclerotic Plaques , 2004, Annals of Biomedical Engineering.

[8]  C. Warlow,et al.  MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70-99%) or with mild (0-29%) carotid stenosis , 1991, The Lancet.

[9]  Chun Yuan,et al.  Identification of Fibrous Cap Rupture With Magnetic Resonance Imaging Is Highly Associated With Recent Transient Ischemic Attack or Stroke , 2002, Circulation.

[10]  R. Virmani,et al.  Atherosclerotic plaque rupture in symptomatic carotid artery stenosis. , 1996, Journal of vascular surgery.

[11]  D. Sackett,et al.  Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. , 1991, The New England journal of medicine.

[12]  J. Kirkpatrick,et al.  Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. , 1998, Journal of insurance medicine.

[13]  Peter J. Kirkpatrick,et al.  MRI-derived measurements of fibrous-cap and lipid-core thickness: the potential for identifying vulnerable carotid plaques in vivo , 2004, Neuroradiology.

[14]  R. Kamm,et al.  Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions A Structural Analysis With Histopathological Correlation , 1993, Circulation.

[15]  R. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  I. Marshall,et al.  MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. , 2004, Journal of biomechanics.

[17]  T. Jensen,et al.  MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70-99%) or with mild (0-29%) carotid stenosis. European Carotid Surgery Trialists' Collaborative Group , 1991 .

[18]  R. Virmani,et al.  The thin-cap fibroatheroma: a type of vulnerable plaque: The major precursor lesion to acute coronary syndromes , 2001, Current opinion in cardiology.

[19]  R D Kamm,et al.  Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. , 1992, Circulation research.

[20]  R. Wilson,et al.  Direct effects of smooth muscle relaxation and contraction on in vivo human brachial artery elastic properties. , 1995, Circulation research.

[21]  D. Sackett,et al.  Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. , 1998, The New England journal of medicine.

[22]  J. Gillard,et al.  Multi-sequence in vivo MRI can quantify fibrous cap and lipid core components in human carotid atherosclerotic plaques. , 2004, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.