Revisiting ω phase embrittlement in metastable β titanium alloys: Role of elemental partitioning

[1]  D. Kent,et al.  Composition of the nanosized orthorhombic O′ phase and its direct transformation to fine α during ageing in metastable β-Ti alloys , 2019, Scripta Materialia.

[2]  M. Janovská,et al.  Elastic constants of β-Ti15Mo , 2019, Journal of Alloys and Compounds.

[3]  W. M. Rainforth,et al.  ω phase strengthened 1.2GPa metastable β titanium alloy with high ductility , 2019, Scripta Materialia.

[4]  D. Raabe,et al.  ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy , 2018, Acta Materialia.

[5]  K. Tsuchiya,et al.  First-principles study of the phase stability and elastic properties of Ti-X alloys (X = Mo, Nb, Al, Sn, Zr, Fe, Co, and O) , 2017 .

[6]  Yandong Wang,et al.  Effect of Mo on the phase stability and elastic mechanical properties of Ti–Mo random alloys from ab initio calculations , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Yunzhi Wang,et al.  Elastically confined martensitic transformation at the nano-scale in a multifunctional titanium alloy , 2017 .

[8]  D. Choudhuri,et al.  Strengthening strategy for a ductile metastable β-titanium alloy using low-temperature aging , 2017 .

[9]  D. Choudhuri,et al.  Coupled experimental and computational investigation of omega phase evolution in a high misfit titanium-vanadium alloy , 2017 .

[10]  D. Choudhuri,et al.  Change in the deformation mode resulting from beta-omega compositional partitioning in a TiMo alloy: Room versus elevated temperature , 2017 .

[11]  Yufeng Zheng,et al.  A nano-scale instability in the β phase of dilute Ti–Mo alloys , 2016 .

[12]  D. Kent,et al.  New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys , 2016 .

[13]  C. Tasan,et al.  Deformation mechanism of ω-enriched Ti–Nb-based gum metal: Dislocation channeling and deformation induced ω–β transformation , 2015 .

[14]  Rodney R. Boyer,et al.  State of the Art in Beta Titanium Alloys for Airframe Applications , 2015 .

[15]  Dierk Raabe,et al.  Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys , 2014 .

[16]  Tong Li,et al.  Point-by-point compositional analysis for atom probe tomography , 2014, MethodsX.

[17]  H. Ogi,et al.  Elastic properties of single-crystalline ω phase in titanium , 2013 .

[18]  F. Prima,et al.  Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects , 2013 .

[19]  J S Tiley,et al.  Novel mixed-mode phase transition involving a composition-dependent displacive component. , 2011, Physical review letters.

[20]  S. Banerjee,et al.  Omega phase transformation – morphologies and mechanisms , 2006 .

[21]  John C. Fanning,et al.  Quick reference guide for β titanium alloys in the 00s , 2005 .

[22]  Dieter Isheim,et al.  Analysis of Three-dimensional Atom-probe Data by the Proximity Histogram , 2000, Microscopy and Microanalysis.

[23]  A. Melander,et al.  The strength of a precipitation hardened AlZnMg alloy , 1978 .

[24]  H. Margolin,et al.  Deformation behavior of an omega hardened alpha-beta titanium alloy , 1974 .

[25]  A. Gysler,et al.  Deformation behavior of age-hardened Ti-Mo alloys , 1974 .

[26]  A. Bowen Omega phase embrittlement in aged Ti-15% Mo , 1971 .

[27]  H. Mabuchi,et al.  Formation of ω phase in Ti–Mo alloys after aging and deforming , 1992 .

[28]  J. Breedis,et al.  Omega phase embrittlement in aged Ti-V , 1970 .