Contour parallel milling tool path generation for arbitrary pocket shape using a fast marching method

Contour parallel tool paths are among the most widely used tool paths for planer milling operations. A number of exact as well as approximate methods are available for offsetting a closed boundary in order to generate a contour parallel tool path; however, the applicability of various offsetting methods is restricted because of limitations in dealing with pocket geometry with and without islands, the high computational costs, and numerical errors. Generation of cusps, segmentation of rarefied corners, and self-intersection during the offsetting operations and finding a unique offsetting solution for pocket with islands are among the associated problems in contour tool path generation. Most of methods are inherently incapable of dealing with such problems and use complex computational routines to identify and rectify these problems. Also, these rectifying techniques are heavily dependent on the type of geometry, and hence, the application of these techniques for arbitrary boundary conditions is limited and prone to errors. In this paper, a new mathematical method for generation of contour parallel tool paths is proposed which is inherently capable of dealing with the aforementioned problems. The method is based on a boundary value formulation of the offsetting problem and a fast marching method based solution for tool path generation. This method handles the topological changes during offsetting naturally and deals with the generation of discontinuities in the slopes by including an “entropy condition” in its numerical implementation. The appropriate modifications are carried out to achieve higher accuracy for milling operations. A number of examples are presented, and computational issues are discussed for tool path generation.

[1]  H. Persson,et al.  NC machining of arbitrarily shaped pockets , 1978 .

[2]  R. Klass An offset spline approximation for plane cubic splines , 1983 .

[3]  Wayne Tiller,et al.  Offsets of Two-Dimensional Profiles , 1984, IEEE Computer Graphics and Applications.

[4]  Rida T. Farouki,et al.  Exact offset procedures for simple solids , 1985, Comput. Aided Geom. Des..

[5]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[6]  Alan de Pennington,et al.  Offsetting in geometric modelling , 1988 .

[7]  Josef Hoschek,et al.  Spline approximation of offset curves , 1988, Comput. Aided Geom. Des..

[8]  Thomas R. Kramer,et al.  Pocket milling with tool engagement detection , 1992 .

[9]  Farhad Arbab,et al.  An algorithm for generating NC tool paths for arbitrarily shaped pockets with islands , 1992, TOGS.

[10]  Robert E. Barnhill,et al.  Geometry Processing for Design and Manufacturing , 1992 .

[11]  Alfred M. Bruckstein,et al.  Shape offsets via level sets , 1993, Comput. Aided Des..

[12]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Byoung Kyu Choi,et al.  Die-cavity pocketing via cutting simulation , 1997, Comput. Aided Des..

[14]  Gershon Elber,et al.  Comparing Offset Curve Approximation Methods , 1997, IEEE Computer Graphics and Applications.

[15]  Paul K. Wright,et al.  Constant engagement tool path generation for convex geometries , 2000 .

[16]  Dharmaraj Veeramani,et al.  Cutter-path generation using multiple cutting-tool sizes for 2-1/2D pocket machining , 2000 .

[17]  Martin Held,et al.  VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments , 2001, Comput. Geom..

[18]  Michael Brady Bieterman,et al.  A Curvilinear Tool-Path Method for Pocket Machining , 2003 .

[19]  Tawfik T. El-Midany,et al.  Toolpath Pattern Comparison: Contour-Parallel with Direction-Parallel , 2006, Geometric Modeling and Imaging--New Trends (GMAI'06).

[20]  Daniel C. H. Yang,et al.  A laplace-based spiral contouring method for general pocket machining , 2007 .

[21]  Aly A. Farag,et al.  MultiStencils Fast Marching Methods: A Highly Accurate Solution to the Eikonal Equation on Cartesian Domains , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Rafael Molina-Carmona,et al.  Morphological offset computing for contour pocketing , 2007 .