Linear approximate Bayes estimator for variance components in random effects model*

Abstract We employ a linear Bayes procedure to estimate the variance components in a random effects model and propose a linear approximate Bayes estimator (LABE) for the variance components, which has an analytical closed form and is easy to use. Numerical simulations show that the proposed LABE is very close to the ordinary Bayes estimator and even performs better than the Lindley’s approximation. Furthermore, we compare the LABE with the Tierney and Kadane’s approximation by simulations and also compare it with the restricted maximum likelihood estimator in the simulations and a real data case. The superiorities of the proposed LABE over the classical estimators are also investigated in terms of the mean squared error matrix (MSEM).

[1]  W. N. Venables,et al.  Estimation of Variance Components and Applications. , 1990 .

[2]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[3]  Karl J. Friston,et al.  Variance Components , 2003 .

[4]  J. Kleffe Bayes invariant quadratic estimators for variance components in linear models , 1975 .

[5]  Shein-Chung Chow,et al.  Advanced Linear Models: Theory and Applications , 1993 .

[6]  Bayes, minimax and nonnegative estimators of variance components under Kullback-Leibler loss , 1998 .

[7]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Weiping Zhang,et al.  The superiorities of Bayes linear unbiased estimation in partitioned linear model , 2011, J. Syst. Sci. Complex..

[9]  A new estimate of the parameters in linear mixed models , 2002 .

[10]  D. Lindley,et al.  Approximate Bayesian methods , 1980 .

[11]  Frederik P. Agterberg Regression Estimators; A Comparative Study: by Marvin H. J. Gruber, 1990, Academic Press, Inc., Boston, xi + 347p., ISBN 0-12-304752-8, $49.95 (U.S.) , 1991 .

[12]  Ronald Bremer,et al.  Estimation of variance components and applications , 1988 .

[13]  Chansoo Kim,et al.  Bayesian estimation for the exponentiated Weibull model under Type II progressive censoring , 2011 .

[14]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[15]  Lichun Wang,et al.  Linear Bayes estimator for the two-parameter exponential family under type II censoring , 2014, Comput. Stat. Data Anal..

[16]  P. Diggle Analysis of Longitudinal Data , 1995 .

[17]  Chuhsing Kate Hsiao,et al.  Computation of reference Bayesian inference for variance components in longitudinal studies , 2008, Comput. Stat..

[18]  P. Diggle,et al.  Analysis of Longitudinal Data , 2003 .

[19]  N. L. Johnson,et al.  Linear Statistical Inference and Its Applications , 1966 .