Effects of nanotwins on the mechanical properties of AlxCoCrFeNi high entropy alloy thin films

Abstract In this work, we investigate the plastic deformation characteristics (hardness, strain rate sensitivity and activation volume) of nanotwinned AlxCoCrFeNi (x = 0, 0.1, 0.3) high entropy alloy thin films (HEAFs). The extremely thin nanotwins with thickness of ~ 2 nm soften these HEAFs, but enhance their strain rate sensitivity. We combine the detwinning softening process with conventional strengthening mechanisms to elucidate the mechanical properties of AlxCoCrFeNi HEAFs. These findings provide deep insights into design strategies to explore the promising high entropy alloys, especially the nanotwinned HEAFs at micro- and nano-scale.

[1]  K. Lu,et al.  Hardness and strain rate sensitivity of nanocrystalline Cu , 2006 .

[2]  Jianqing Jiang,et al.  Strain-rate effect upon the tensile behavior of CoCrFeNi high-entropy alloys , 2017 .

[3]  P. Liaw,et al.  Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy , 2016 .

[4]  Ralph Spolenak,et al.  Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy , 2014 .

[5]  Xuemei Cheng,et al.  Deformation Twinning in Nanocrystalline Aluminum , 2003, Science.

[6]  K. T. Ramesh,et al.  Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals , 2004 .

[7]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[8]  Youtong Fang,et al.  Deformation twinning behaviors of the low stacking fault energy high-entropy alloy: An in-situ TEM study , 2017 .

[9]  S. Suresh,et al.  Strain rate sensitivity of Cu with nanoscale twins , 2006 .

[10]  Ting Zhu,et al.  In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. , 2015, Nature materials.

[11]  T. G. Nieh,et al.  Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy , 2013 .

[12]  P. Liaw,et al.  Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy , 2017 .

[13]  T. Nieh,et al.  Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system , 2014 .

[14]  Xiaolei Wu,et al.  Deformation twinning in nanocrystalline materials , 2012 .

[15]  G. Liu,et al.  Twinning/detwinning-mediated grain growth and mechanical properties of free-standing nanotwinned Ni foils: Grain size and strain rate effects , 2015 .

[16]  Karin A. Dahmen,et al.  Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems , 2013 .

[17]  Yong Zhang,et al.  Effects of AL addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy , 2015 .

[18]  K. B. S. Rao,et al.  Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods , 2017 .

[19]  K. An,et al.  A precipitation-hardened high-entropy alloy with outstanding tensile properties , 2016 .

[20]  John J. Lewandowski,et al.  High-entropy Al 0.3 CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures , 2017 .

[21]  Xiaoxu Huang,et al.  Revealing the Maximum Strength in Nanotwinned Copper , 2009, Science.

[22]  William A. Curtin,et al.  Theory of strengthening in fcc high entropy alloys , 2016 .

[23]  R. Pippan,et al.  Nanostructure and properties of a Cu–Cr composite processed by severe plastic deformation , 2008, 0804.4378.

[24]  Q. Jiang,et al.  Experimental and modelling investigations on strain rate sensitivity of an electrodeposited 20 nm grain sized Ni , 2007 .

[25]  Huajian Gao,et al.  Dislocation nucleation governed softening and maximum strength in nano-twinned metals , 2010, Nature.

[26]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[27]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[28]  Subra Suresh,et al.  Nano-sized twins induce high rate sensitivity of flow stress in pure copper , 2005 .

[29]  H. Yasuda,et al.  Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals , 2015 .

[30]  J. Yeh,et al.  Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys , 2009 .

[31]  E. George,et al.  Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys , 2017 .

[32]  Baolong Zheng,et al.  Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy , 2016 .

[33]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[34]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .