A semi-parametric approach to dual modeling when no replication exists

In many applications, it is of interest to simultaneously model the mean and variance of a response when no replication exists. Modeling the mean and variance simultaneously is commonly referred to as dual modeling. Parametric approaches to dual modeling are popular when the underlying mean and variance functions can be expressed explicitly. Quite often, however, nonparametric approaches are more appropriate due to the presence of unusual curvature in the underlying functions. In sparse data situations, nonparametric methods often fit the data too closely while parametric estimates exhibit problems with bias. We propose a semi-parametric dual modeling approach [Dual Model Robust Regression (DMRR)] for non-replicated data. DMRR combines parametric and nonparametric fits resulting in improved mean and variance estimation. The methodology is illustrated with a data set from the literature as well as via a simulation study.

[1]  M. Aitkin Modelling variance heterogeneity in normal regression using GLIM , 1987 .

[2]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[3]  George E. P. Box,et al.  Dispersion Effects From Fractional Designs , 1986 .

[4]  A. Ullah,et al.  Asymptotic Normality of a Combined Regression Estimator , 1999 .

[5]  Raymond J. Carroll,et al.  Variance Function Estimation in Regression: the Effect of Estimating the Mean , 1988 .

[6]  David Ruppert,et al.  Local polynomial variance-function estimation , 1997 .

[7]  William A. Brenneman,et al.  A Dual-Response Approach to Robust Parameter Design for a Generalized Linear Model , 2005 .

[8]  John A. Nelder,et al.  Robust Design via Generalized Linear Models , 2003 .

[9]  P. Chaudhuri,et al.  On a Hybrid Approach to Parametric and Nonparametric Regression , 2011 .

[10]  Christine M. Anderson-Cook,et al.  A semi-parametric approach to robust parameter design , 2008 .

[11]  Connie M. Borror,et al.  Robust Parameter Design: A Review , 2004 .

[12]  W. Härdle Applied Nonparametric Regression , 1991 .

[13]  Raymond J. Carroll,et al.  Adapting for Heteroscedasticity in Linear Models , 1982 .

[14]  Jeffrey B. Birch,et al.  Model robust regression: combining parametric, nonparametric, and semiparametric methods , 2001 .

[15]  Hans Edner,et al.  Locally weighted least squares kernel regression and statistical evaluation of LIDAR measurements , 1996 .

[16]  Richard L. Einsporn,et al.  An overview of model-robust regression , 2000 .

[17]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[18]  A note on combining parametric and non-parametric regression , 1997 .

[19]  T. Robinson,et al.  Model misspecification in parametric dual modeling , 2000 .

[20]  Christine M. Anderson-Cook,et al.  Some Guidelines For Using Nonparametric Methods For Modeling Data From Response Surface Designs , 2005 .