Coevolution of Role-Based Cooperation in Multiagent Systems

In tasks such as pursuit and evasion, multiple agents need to coordinate their behavior to achieve a common goal. An interesting question is, how can such behavior be best evolved? A powerful approach is to control the agents with neural networks, coevolve them in separate subpopulations, and test them together in the common task. In this paper, such a method, called multiagent enforced subpopulations (multiagent ESP), is proposed and demonstrated in a prey-capture task. First, the approach is shown to be more efficient than evolving a single central controller for all agents. Second, cooperation is found to be most efficient through stigmergy, i.e., through role-based responses to the environment, rather than communication between the agents. Together these results suggest that role-based cooperation is an effective strategy in certain multiagent tasks.

[1]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[2]  L. D. Whitley,et al.  Genetic Reinforcement Learning for Neurocontrol Problems , 2004, Machine Learning.

[3]  P.-P. Grasse La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs , 1959, Insectes Sociaux.

[4]  Risto Miikkulainen,et al.  Efficient Reinforcement Learning through Symbiotic Evolution , 2004 .

[5]  G. M. Werner Evolution of Communication in Artificial Organisms, Artifial Life II , 1991 .

[6]  Stefano Nolfi,et al.  Evolving Mobile Robots Able to Display Collective Behaviors , 2003, Artificial Life.

[7]  Barbara Messing,et al.  An Introduction to MultiAgent Systems , 2002, Künstliche Intell..

[8]  Ezequiel A. Di Paolo,et al.  Behavioral Coordination, Structural Congruence and Entrainment in a Simulation of Acoustically Coupled Agents , 2000, Adapt. Behav..

[9]  Risto Miikkulainen,et al.  Forming Neural Networks Through Efficient and Adaptive Coevolution , 1997, Evolutionary Computation.

[10]  Jean-Arcady Meyer,et al.  Coevolving Communicative Behavior in a Linear Pursuer-Evader Game , 1998 .

[11]  PrencipeGiuseppe,et al.  Coordination without communication , 2004 .

[12]  Alan S. Perelson,et al.  Searching for Diverse, Cooperative Populations with Genetic Algorithms , 1993, Evolutionary Computation.

[13]  Jordan B. Pollack,et al.  Coevolving communicative behavior in a linear pursuer-evadergame , 1998 .

[14]  Tucker Balch,et al.  Learning Roles: Behavioral Diversity in Robot Teams , 1997 .

[15]  Larry D. Pyeatt,et al.  A comparison between cellular encoding and direct encoding for genetic neural networks , 1996 .

[16]  Hitoshi Iba,et al.  Genetic Programming 1998: Proceedings of the Third Annual Conference , 1999, IEEE Trans. Evol. Comput..

[17]  Richard K. Belew,et al.  New Methods for Competitive Coevolution , 1997, Evolutionary Computation.

[18]  Chris Melhuish,et al.  Stigmergy, Self-Organization, and Sorting in Collective Robotics , 1999, Artificial Life.

[19]  Sandip Sen,et al.  Crossover Operators for Evolving A Team , 1997 .

[20]  Lincoln Smith,et al.  Evolving teamwork and role-allocation with real robots , 2002 .

[21]  Kee-Eung Kim,et al.  Learning Finite-State Controllers for Partially Observable Environments , 1999, UAI.

[22]  Sandip Sen,et al.  Evolving Beharioral Strategies in Predators and Prey , 1995, Adaption and Learning in Multi-Agent Systems.

[23]  John J. Grefenstette,et al.  Evolutionary Algorithms for Reinforcement Learning , 1999, J. Artif. Intell. Res..

[24]  Risto Miikkulainen,et al.  Solving Non-Markovian Control Tasks with Neuro-Evolution , 1999, IJCAI.

[25]  Maja J. Mataric,et al.  Territorial multi-robot task division , 1998, IEEE Trans. Robotics Autom..

[26]  Risto Miikkulainen,et al.  Neuroevolution for adaptive teams , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[27]  Risto Miikkulainen,et al.  Robust non-linear control through neuroevolution , 2003 .

[28]  Sean Luke,et al.  Genetic Programming Produced Competitive Soccer Softbot Teams for RoboCup97 , 1998 .

[29]  C.W. Anderson,et al.  Learning to control an inverted pendulum using neural networks , 1989, IEEE Control Systems Magazine.

[30]  L. Darrell Whitley,et al.  Delta Coding: An Iterative Search Strategy for Genetic Algorithms , 1991, ICGA.

[31]  Pattie Maes,et al.  The Evolution of Communication Schemes Over Continuous Channels , 1996 .

[32]  Massimo De Sanctis,et al.  Evolution of aeronautical communications for personal and multimedia services , 2003, IEEE Commun. Mag..

[33]  Nicholas R. Jennings,et al.  The Cooperative Problem-solving Process , 1999, J. Log. Comput..

[34]  Kenneth A. De Jong,et al.  Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.

[35]  David E. Moriarty,et al.  Symbiotic Evolution of Neural Networks in Sequential Decision Tasks , 1997 .

[36]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[37]  Tony Savage,et al.  Shaping: The Link Between Rats and Robots , 1998, Connect. Sci..

[38]  Ashwin Ram,et al.  Experiments with Reinforcement Learning in Problems with Continuous State and Action Spaces , 1997, Adapt. Behav..

[39]  Victor R. Lesser,et al.  Cooperative Multiagent Systems: A Personal View of the State of the Art , 1999, IEEE Trans. Knowl. Data Eng..

[40]  Heinz Mühlenbein,et al.  The parallel genetic algorithm as function optimizer , 1991, Parallel Comput..

[41]  Mark D. Pendrith On Reinforcement Learning of Control Actions in Noisy and Non-Markovian Domains , 1994 .

[42]  Diego Calvanese,et al.  Unifying Class-Based Representation Formalisms , 2011, J. Artif. Intell. Res..

[43]  Kyle Wagner,et al.  Cooperative Strategies and the Evolution of Communication , 2000, Artificial Life.

[44]  Yishay Mansour,et al.  Policy Gradient Methods for Reinforcement Learning with Function Approximation , 1999, NIPS.

[45]  M. Benda,et al.  On Optimal Cooperation of Knowledge Sources , 1985 .

[46]  Sandip Sen,et al.  Co-adaptation in a Team , 1997 .

[47]  L. Darrell Whitley,et al.  Cellular Encoding Applied to Neurocontrol , 1995, ICGA.

[48]  Peter Dayan,et al.  Q-learning , 1992, Machine Learning.

[49]  D. Floreano,et al.  Evolutionary Conditions for the Emergence of Communication in Robots , 2007, Current Biology.

[50]  J. Batali,et al.  Innate biases and critical periods: Combining evolution and learning in the acquisition of syntax , 1994 .

[51]  Richard S. Sutton,et al.  Neuronlike adaptive elements that can solve difficult learning control problems , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[52]  Marco Colombetti,et al.  Incremental Robot Shaping , 1998, Connect. Sci..

[53]  Risto Miikkulainen,et al.  Incremental Evolution of Complex General Behavior , 1997, Adapt. Behav..

[54]  Risto Miikkulainen,et al.  Efficient Non-linear Control Through Neuroevolution , 2006, ECML.

[55]  C. Lee Giles,et al.  Talking Helps: Evolving Communicating Agents for the Predator-Prey Pursuit Problem , 2000, Artificial Life.

[56]  Tad Hogg,et al.  Cooperative Problem solving , 1992, Computation: The Micro and the Macro View.

[57]  Lorien Y. Pratt,et al.  Information Measure Based Skeletonisation , 1991, NIPS.

[58]  David B. Fogel,et al.  Evolving Neural Control Systems , 1995, IEEE Expert.

[59]  L. Steels Self-organising vocabularies , 1996 .

[60]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[61]  Risto Miikkulainen,et al.  Accelerated Neural Evolution through Cooperatively Coevolved Synapses , 2008, J. Mach. Learn. Res..

[62]  Rudolf Paul Wiegand,et al.  An analysis of cooperative coevolutionary algorithms , 2004 .

[63]  Stephen F. Smith,et al.  A learning system based on genetic adaptive algorithms , 1980 .

[64]  John H. Holland,et al.  Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems , 1995 .

[65]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[66]  Risto Miikkulainen,et al.  Evolving Reusable Neural Modules , 2004, GECCO.

[67]  Risto Miikkulainen,et al.  Competitive Coevolution through Evolutionary Complexification , 2011, J. Artif. Intell. Res..