An atmosphere and light tuned highly diastereoselective synthesis of cyclobuta/penta[b]indoles from aniline-tethered alkylidenecyclopropanes with alkynes.

Metal-free and environmentally friendly synthesis highly controlled by natural sources like visible light and air (or oxygen) is always a pursuit of green chemistry. In this paper, an atmosphere and light tuned highly diastereoselective synthesis of two important polyheterocyclic skeletons: cyclobuta/penta[b]indoles from aniline-tethered alkylidenecyclopropanes with alkynes, has been developed. The chiral cyclobuta/penta[b]indoles have also been obtained by optical resolution.

[1]  M. Shi,et al.  Indium(III)-catalyzed intramolecular dearomative cycloaddition of N-sulfonylaziridines to indoles: facile synthesis of tetracyclic pyrroloindoline skeletons , 2018 .

[2]  Hong-Wei Chen,et al.  Sequential Visible-Light Photoactivation and Palladium Catalysis Enabling Enantioselective [4+2] Cycloadditions. , 2017, Journal of the American Chemical Society.

[3]  N. Jiao,et al.  Oxygenation via C-H/C-C Bond Activation with Molecular Oxygen. , 2017, Accounts of chemical research.

[4]  Xiangying Tang,et al.  Rhodium/Silver Synergistic Catalysis in Highly Enantioselective Cycloisomerization/Cross Coupling of Keto-Vinylidenecyclopropanes with Terminal Alkynes. , 2017, Journal of the American Chemical Society.

[5]  T. Bach,et al.  Brønsted Acid Catalysis in Visible‐Light‐Induced [2+2] Photocycloaddition Reactions of Enone Dithianes , 2017, Angewandte Chemie.

[6]  H. Kono,et al.  Stark Spectroscopy of Absorption and Emission of Indoline Sensitizers: A Correlation with the Performance of Photovoltaic Cells , 2016 .

[7]  N. Jiao,et al.  Direct Tryptophols Synthesis from 2-Vinylanilines and Alkynes via C≡C Triple Bond Cleavage and Dioxygen Activation. , 2016, Journal of the American Chemical Society.

[8]  Xiao-Qiang Hu,et al.  Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis and Functionalization: Reaction Design and Beyond. , 2016, Accounts of chemical research.

[9]  H. Tian,et al.  Novel Squaraine Cosensitization System of Panchromatic Light-Harvesting with Synergistic Effect for Highly Efficient Solar Cells , 2016 .

[10]  Xiao-Qiang Hu,et al.  Visible light photoredox-controlled reactions of N-radicals and radical ions. , 2016, Chemical Society reviews.

[11]  T. Ma,et al.  Indoor Light Performance of Coil Type Cylindrical Dye Sensitized Solar Cells. , 2016, Journal of Nanoscience and Nanotechnology.

[12]  T. Bach,et al.  Recent Advances in the Synthesis of Cyclobutanes by Olefin [2 + 2] Photocycloaddition Reactions , 2016, Chemical reviews.

[13]  R. Nandi,et al.  Synthesis of 3,3-Spiroindolines via FeCl3-Mediated Cyclization of Aryl- or Alkene-Containing 3-Substituted N-Ac Indoles. , 2016, Organic letters.

[14]  A. Bottoni,et al.  Gold(I)-Catalyzed Dearomative [2+2]-Cycloaddition of Indoles with Activated Allenes: A Combined Experimental-Computational Study. , 2015, Chemistry.

[15]  H. Ågren,et al.  Pyrimidine-2-carboxylic Acid as an Electron-Accepting and Anchoring Group for Dye-Sensitized Solar Cells. , 2015, ACS applied materials & interfaces.

[16]  M. Shi,et al.  Palladium-catalyzed asymmetric [3+2] cycloaddition to construct 1,3-indandione and oxindole-fused spiropyrazolidine scaffolds , 2015 .

[17]  Da Zhao,et al.  Dearomative [2 + 2] Cycloaddition and Formal C-H Insertion Reaction of o-Carboryne with Indoles: Synthesis of Carborane-Functionalized Heterocycles. , 2015, Journal of the American Chemical Society.

[18]  Xiangying Tang,et al.  Catalyst-Dependent Stereodivergent and Regioselective Synthesis of Indole-Fused Heterocycles through Formal Cycloadditions of Indolyl-Allenes. , 2015, Journal of the American Chemical Society.

[19]  Lili Lin,et al.  Asymmetric dearomatization of indoles through a Michael/Friedel-Crafts-type cascade to construct polycyclic spiroindolines. , 2015, Angewandte Chemie.

[20]  M. Bandini,et al.  Enantioselective gold catalyzed dearomative [2+2]-cycloaddition between indoles and allenamides. , 2015, Chemical communications.

[21]  Xiangying Tang,et al.  One-pot tandem diastereoselective and enantioselective synthesis of functionalized oxindole-fused spiropyrazolidine frameworks. , 2014, Chemistry.

[22]  Xiangying Tang,et al.  Phosphine-catalyzed annulations of 4,4-dicyano-2-methylenebut-3-enoates with maleimides and maleic anhydride. , 2014, Angewandte Chemie.

[23]  Xiangying Tang,et al.  Catalyst-dependent divergent synthesis of pyrroles from 3-alkynyl imine derivatives: a noncarbonylative and carbonylative approach. , 2014, Angewandte Chemie.

[24]  W. Xiao,et al.  Visible-light-induced photocatalytic formyloxylation reactions of 3-bromooxindoles with water and DMF: the scope and mechanism , 2014 .

[25]  L. Yadav,et al.  Visible light organophotoredox catalysis: a general approach to β-keto sulfoxidation of alkenes , 2014 .

[26]  T. Bach,et al.  Enantioselective catalysis of the intermolecular [2+2] photocycloaddition between 2-pyridones and acetylenedicarboxylates. , 2014, Angewandte Chemie.

[27]  S. Reisman,et al.  Enantioselective total synthesis of (-)-lansai B and (+)-nocardioazines A and B. , 2014, Angewandte Chemie.

[28]  R. Hughes,et al.  Dearomative indole (3 + 2) cycloaddition reactions. , 2014, Journal of the American Chemical Society.

[29]  H. Ågren,et al.  Insight into Benzothiadiazole Acceptor in D–A−π–A Configuration on Photovoltaic Performances of Dye-Sensitized Solar Cells , 2014 .

[30]  J. Hooker,et al.  Imaging Evaluation of 5HT2C Agonists, [11C]WAY-163909 and [11C]Vabicaserin, Formed by Pictet–Spengler Cyclization , 2014, Journal of medicinal chemistry.

[31]  David A. Nicewicz,et al.  Recent Applications of Organic Dyes as Photoredox Catalysts in Organic Synthesis , 2014 .

[32]  A. Ranjan,et al.  Biomimetic total syntheses of borreverine and flinderole alkaloids. , 2013, The Journal of organic chemistry.

[33]  Y. Nishimura,et al.  Identification of a novel indoline derivative for in vivo fluorescent imaging of blood-brain barrier disruption in animal models. , 2013, ACS chemical neuroscience.

[34]  Xiangying Tang,et al.  Gold-catalyzed cyclization of 1-(indol-3-yl)-3-alkyn-1-ols: facile synthesis of diversified carbazoles. , 2013, Chemistry.

[35]  Xiangying Tang,et al.  Gold-catalyzed intramolecular regio- and enantioselective cycloisomerization of 1,1-bis(indolyl)-5-alkynes. , 2013, Angewandte Chemie.

[36]  Hao Xu,et al.  Copper-catalyzed highly enantioselective cyclopentannulation of indoles with donor-acceptor cyclopropanes. , 2013, Journal of the American Chemical Society.

[37]  Jillian E. Spangler,et al.  Catalytic asymmetric synthesis of pyrroloindolines via a rhodium(II)-catalyzed annulation of indoles. , 2013, Journal of the American Chemical Society.

[38]  H. Ishibashi,et al.  Regioselective inter- and intramolecular formal [4+2] cycloaddition of cyclobutanones with indoles and total synthesis of (±)-aspidospermidine. , 2013, Angewandte Chemie.

[39]  J. Mascareñas,et al.  Gold(I)-Catalyzed Intermolecular [2+2] Cycloadditions between Allenamides and Alkenes , 2012 .

[40]  K. Meerholz,et al.  Molecular oxygen as a redox catalyst in intramolecular photocycloadditions of coumarins. , 2012, Angewandte Chemie.

[41]  N. Jiao,et al.  Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant. , 2012, Chemical Society reviews.

[42]  Paul T. Anastas,et al.  Green chemistry: present and future. , 2012, Chemical Society reviews.

[43]  Peter J Dunn,et al.  The importance of green chemistry in process research and development. , 2012, Chemical Society reviews.

[44]  D. MacMillan,et al.  Collective synthesis of natural products by means of organocascade catalysis , 2011, Nature.

[45]  Yong Qin,et al.  Total synthesis of indoline alkaloids: A cyclopropanation strategy. , 2011, Accounts of chemical research.

[46]  Jagan M. R. Narayanam,et al.  Visible-light-mediated conversion of alcohols to halides. , 2011, Nature chemistry.

[47]  S. Reisman,et al.  Enantioselective synthesis of pyrroloindolines by a formal [3 + 2] cycloaddition reaction. , 2010, Journal of the American Chemical Society.

[48]  Paul Anastas,et al.  Green chemistry: principles and practice. , 2010, Chemical Society reviews.

[49]  Y. Lian,et al.  Rhodium-catalyzed [3 + 2] annulation of indoles. , 2010, Journal of the American Chemical Society.

[50]  C. Stephenson,et al.  Visible-light photoredox catalysis: aza-Henry reactions via C-H functionalization. , 2010, Journal of the American Chemical Society.

[51]  Joseph W Tucker,et al.  Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction. , 2009, Journal of the American Chemical Society.

[52]  C. Vanderwal,et al.  Efficient access to the core of the Strychnos, Aspidosperma and Iboga alkaloids. A short synthesis of norfluorocurarine. , 2009, Journal of the American Chemical Society.

[53]  A. Ballesteros,et al.  Asymmetric C2-C3 cyclopentannulation of the indole ring. , 2009, Journal of the American Chemical Society.

[54]  David A. Nicewicz,et al.  Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes , 2008, Science.

[55]  Chao-Jun Li,et al.  Green chemistry for chemical synthesis , 2008, Proceedings of the National Academy of Sciences.

[56]  M. A. Ischay,et al.  Efficient visible light photocatalysis of [2+2] enone cycloadditions. , 2008, Journal of the American Chemical Society.

[57]  Liming Zhang,et al.  Au-containing all-carbon 1,4-dipoles: generation and [4 + 2] annulation in the formation of carbo-/heterocycles. , 2008, Journal of the American Chemical Society.

[58]  V. Catalano,et al.  PtCl2-catalyzed rapid access to tetracyclic 2,3-indoline-fused cyclopentenes: reactivity divergent from cationic Au(I) catalysis and synthetic potential. , 2007, Journal of the American Chemical Society.

[59]  Ming‐Shiuan Yu,et al.  C-2/c-3 annulation and C-2 alkylation of indoles with 2-alkoxycyclopropanoate esters. , 2007, Journal of the American Chemical Society.

[60]  M. Hayashi,et al.  Leuconoxine, kopsinitarine, kopsijasmine, and kopsinone derivatives from Kopsia. , 2007, Journal of natural products.

[61]  P. Witt-Enderby,et al.  Synthesis, NMR conformational analysis and pharmacological evaluation of 7,7a,13,14-tetrahydro-6H-cyclobuta[b]pyrimido[1,2-a:3,4-a']diindole analogues as melatonin receptor ligands. , 2007, Organic & biomolecular chemistry.

[62]  Paul T Anastas,et al.  Innovations and green chemistry. , 2007, Chemical reviews.

[63]  B. Trost,et al.  Palladium-catalyzed enantioselective C-3 allylation of 3-substituted-1H-indoles using trialkylboranes. , 2006, Journal of the American Chemical Society.

[64]  Liming Zhang Tandem au-catalyzed 3,3-rearrangement-[2 + 2] cycloadditions of propargylic esters: expeditious access to highly functionalized 2,3-indoline-fused cyclobutanes. , 2005, Journal of the American Chemical Society.

[65]  R. Sheldon Green solvents for sustainable organic synthesis: state of the art , 2005 .

[66]  M. Kerr,et al.  Cyclopentannulation of 3-alkylindoles: a synthesis of a tetracyclic subunit of the kopsane alkaloids. , 2001, The Journal of organic chemistry.

[67]  M. Kerr,et al.  The annulation of 3-alkylindoles with 1,1-cyclopropanediesters , 1999 .

[68]  P. Seaton,et al.  Studies in biomimetic alkaloid syntheses. 13. Total syntheses of racemic aspidofractine, pleiocarpine, pleiocarpinine, kopsinine, N-methylkopsanone, and kopsanone , 1985 .

[69]  T. Gallagher,et al.  Synthesis of (.+-.)-10,22-dioxokopsane and (.+-.)-kopsanone, heptacyclic indole alkaloids. Synthetic and mechanistic studies , 1984 .

[70]  C. Djerassi,et al.  MASS SPECTROMETRY IN STRUCTURAL AND STEREOCHEMICAL PROBLEMS, IV. VINDOLININE. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[71]  I. Marek,et al.  Palladium-catalyzed oxidative cyclization of aniline-tethered alkylidenecyclopropanes with O2: a facile protocol to selectively synthesize 2- and 3-vinylindoles. , 2016, Chemical communications.

[72]  M. Neuburger,et al.  Palladium(0)-catalyzed asymmetric C(sp 3 ) – H arylation using a chiral binol-derived phosphate and an achiral ligand † , 2016 .

[73]  M. Claeys,et al.  Spermacoceine, a bis-indole alkaloid from Borreria verticillata , 1991 .