Statistical Learning and Sequential Prediction

[1]  Rong Jin,et al.  25th Annual Conference on Learning Theory Online Optimization with Gradual Variations , 2022 .

[2]  Ohad Shamir,et al.  Relax and Localize: From Value to Algorithms , 2012, ArXiv.

[3]  Ambuj Tewari,et al.  Complexity-Based Approach to Calibration with Checking Rules , 2011, COLT.

[4]  Ambuj Tewari,et al.  Online Learning: Stochastic, Constrained, and Smoothed Adversaries , 2011, NIPS.

[5]  V. Koltchinskii,et al.  Oracle inequalities in empirical risk minimization and sparse recovery problems , 2011 .

[6]  Sham M. Kakade,et al.  An Analysis of Random Design Linear Regression , 2011, ArXiv.

[7]  Ambuj Tewari,et al.  Online Learning: Beyond Regret , 2010, COLT.

[8]  Peter L. Bartlett,et al.  Blackwell Approachability and No-Regret Learning are Equivalent , 2010, COLT.

[9]  Ambuj Tewari,et al.  Online Learning: Random Averages, Combinatorial Parameters, and Learnability , 2010, NIPS.

[10]  Elad Hazan,et al.  Extracting certainty from uncertainty: regret bounded by variation in costs , 2008, Machine Learning.

[11]  Elad Hazan,et al.  Better Algorithms for Benign Bandits , 2009, J. Mach. Learn. Res..

[12]  Alexander Shapiro,et al.  Stochastic Approximation approach to Stochastic Programming , 2013 .

[13]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[14]  A. Juditsky,et al.  Learning by mirror averaging , 2005, math/0511468.

[15]  Arnak S. Dalalyan,et al.  Aggregation by Exponential Weighting and Sharp Oracle Inequalities , 2007, COLT.

[16]  P. Massart,et al.  Concentration inequalities and model selection , 2007 .

[17]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[18]  Y. Mansour,et al.  Improved second-order bounds for prediction with expert advice , 2005, Machine Learning.

[19]  L. Wasserman All of Nonparametric Statistics , 2005 .

[20]  M. Rudelson,et al.  Combinatorics of random processes and sections of convex bodies , 2004, math/0404192.

[21]  Claudio Gentile,et al.  On the generalization ability of on-line learning algorithms , 2001, IEEE Transactions on Information Theory.

[22]  Peter L. Bartlett,et al.  Model Selection and Error Estimation , 2000, Machine Learning.

[23]  Santosh S. Vempala,et al.  Efficient algorithms for online decision problems , 2005, J. Comput. Syst. Sci..

[24]  Gábor Lugosi,et al.  Introduction to Statistical Learning Theory , 2004, Advanced Lectures on Machine Learning.

[25]  Marc Teboulle,et al.  Mirror descent and nonlinear projected subgradient methods for convex optimization , 2003, Oper. Res. Lett..

[26]  A. Tsybakov,et al.  Optimal aggregation of classifiers in statistical learning , 2003 .

[27]  S. Mendelson,et al.  Entropy and the combinatorial dimension , 2002, math/0203275.

[28]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[29]  Shahar Mendelson,et al.  A Few Notes on Statistical Learning Theory , 2002, Machine Learning Summer School.

[30]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[31]  Leo Breiman,et al.  Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) , 2001 .

[32]  Peter L. Bartlett,et al.  Neural Network Learning - Theoretical Foundations , 1999 .

[33]  Yuhong Yang,et al.  Information-theoretic determination of minimax rates of convergence , 1999 .

[34]  A. Dawid,et al.  Prequential probability: principles and properties , 1999 .

[35]  Neri Merhav,et al.  Universal Prediction , 1998, IEEE Trans. Inf. Theory.

[36]  G. Lugosi,et al.  On Prediction of Individual Sequences , 1998 .

[37]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[38]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[39]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[40]  David Blackwell,et al.  Minimax vs. Bayes Prediction , 1995, Probability in the engineering and informational sciences (Print).

[41]  Noga Alon,et al.  Scale-sensitive dimensions, uniform convergence, and learnability , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[42]  David Haussler,et al.  Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications , 1992, Inf. Comput..

[43]  R. Schapire,et al.  Toward Efficient Agnostic Learning , 1992, COLT.

[44]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[45]  Robert E. Schapire,et al.  Efficient distribution-free learning of probabilistic concepts , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[46]  S. Simons You cannot generalize the minimax theorem too much , 1989 .

[47]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[48]  H. Robbins,et al.  Asymptotically efficient adaptive allocation rules , 1985 .

[49]  R. Dudley Central Limit Theorems for Empirical Measures , 1978 .

[50]  D. Blackwell An analog of the minimax theorem for vector payoffs. , 1956 .

[51]  H. Robbins Some aspects of the sequential design of experiments , 1952 .

[52]  Abraham Wald,et al.  Statistical Decision Functions , 1951 .