Achieving short high-quality gate-all-around structures for horizontal nanowire field-effect transistors

We introduce a fabrication method for gate-all-around nanowire field-effect transistors. Single nanowires were aligned perpendicular to underlying bottom gates using a resist-trench alignment technique. Top gates were then defined aligned to the bottom gates to form gate-all-around structures. This approach overcomes significant limitations in minimal obtainable gate length and gate-length control in previous horizontal wrap-gated nanowire transistors that arise because the gate is defined by wet-etching. In the method presented here gate-length control is limited by the resolution of the electron-beam-lithography process. We demonstrate the versatility of our approach by fabricating a device with an independent bottom gate, top gate, and gate-all-around structure as well as a device with three independent gate-all-around structures with 300, 200, and 150 nm gate length. Our method enables us to achieve subthreshold swings as low as 38 mV dec−1 at 77 K for a 150 nm gate length.

[1]  A. Micolich,et al.  Using Ultrathin Parylene Films as an Organic Gate Insulator in Nanowire Field-Effect Transistors. , 2018, Nano letters.

[2]  E. Memišević,et al.  Vertical Nanowire TFETs With Channel Diameter Down to 10 nm and Point SMIN of 35 mV/Decade , 2018, IEEE Electron Device Letters.

[3]  E. Memišević,et al.  InAs/InGaAsSb/GaSb Nanowire Tunnel Field-Effect Transistors , 2017, IEEE Transactions on Electron Devices.

[4]  Y. Niquet,et al.  Split-Channel Ballistic Transport in an InSb Nanowire. , 2017, Nano letters.

[5]  G. A. Nemnes,et al.  Adiabatic Edge Channel Transport in a Nanowire Quantum Point Contact Register. , 2016, Nano letters.

[6]  T. Schäpers,et al.  Ballistic Transport and Exchange Interaction in InAs Nanowire Quantum Point Contacts. , 2016, Nano letters.

[7]  T. Schäpers,et al.  Resolving ambiguities in nanowire field-effect transistor characterization. , 2015, Nanoscale.

[8]  D. J. Carrad,et al.  InAs Nanowire Transistors with Multiple, Independent Wrap-Gate Segments. , 2015, Nano letters.

[9]  Lars-Erik Wernersson,et al.  III–V compound semiconductor transistors—from planar to nanowire structures , 2014 .

[10]  Mercy Lard,et al.  Molecular motor transport through hollow nanowires. , 2014, Nano letters.

[11]  K. Dick,et al.  A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow. , 2013, Nano letters.

[12]  Santosh Kumar Gupta,et al.  Modeling of cylindrical surrounding gate MOSFETs including the fringing field effects , 2013 .

[13]  V. Shumeiko,et al.  Quantized conductance and its correlation to the supercurrent in a nanowire connected to superconductors. , 2013, Nano letters.

[14]  M. J. Manfra,et al.  III-V gate-all-around nanowire MOSFET process technology: From 3D to 4D , 2012, 2012 International Electron Devices Meeting.

[15]  T. Fukui,et al.  A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.

[16]  Isabelle Ferain,et al.  Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors , 2011, Nature.

[17]  Guo-Qiang Lo,et al.  Vertically Stacked and Independently Controlled Twin-Gate MOSFETs on a Single Si Nanowire , 2011, IEEE Electron Device Letters.

[18]  Ru Huang,et al.  Predictive 3-D Modeling of Parasitic Gate Capacitance in Gate-all-Around Cylindrical Silicon Nanowire MOSFETs , 2011, IEEE Transactions on Electron Devices.

[19]  A. Micolich,et al.  Realizing lateral wrap-gated nanowire FETs: controlling gate length with chemistry rather than lithography. , 2011, Nano letters.

[20]  M. Chan,et al.  3-D matrix nano-wire transistor fabrication on silicon substrate , 2010, 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology.

[21]  Andrew J. Senesi,et al.  Alignment strategies for the assembly of nanowires with submicron diameters. , 2010, Small.

[22]  Xiangfeng Duan,et al.  High-yield self-limiting single-nanowire assembly with dielectrophoresis. , 2010, Nature nanotechnology.

[23]  M. A. Mohammad,et al.  The Interdependence of Exposure and Development Conditions when Optimizing Low-Energy EBL for Nano-Scale Resolution , 2010 .

[24]  Eiichi Sano,et al.  Vertical Surrounding Gate Transistors Using Single InAs Nanowires Grown on Si Substrates , 2010 .

[25]  Bryan M. Cord,et al.  Limiting factors in sub- 10 nm scanning-electron-beam lithography , 2009 .

[26]  P. T. Lai,et al.  A fringing-capacitance model for deep-submicron MOSFET with high-k gate dielectric , 2008, Microelectron. Reliab..

[27]  David K. Ferry,et al.  Nanowires in Nanoelectronics , 2008, Science.

[28]  J. Kavalieros,et al.  Integrated nanoelectronics for the future. , 2007, Nature materials.

[29]  C. Thelander,et al.  Sulfur passivation for ohmic contact formation to InAs nanowires , 2007 .

[30]  Jean-Pierre Colinge,et al.  Device design guidelines for nano-scale MuGFETs , 2007 .

[31]  D. Loss,et al.  Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot. , 2007, Physical review letters.

[32]  N. Singh,et al.  Three Dimensionally Stacked SiGe Nanowire Array and Gate-All-Around p-MOSFETs , 2006, 2006 International Electron Devices Meeting.

[33]  K. Ensslin,et al.  Top-gate defined double quantum dots in InAs nanowires , 2006, cond-mat/0609463.

[34]  S.C. Rustagi,et al.  High-performance fully depleted silicon nanowire (diameter /spl les/ 5 nm) gate-all-around CMOS devices , 2006, IEEE Electron Device Letters.

[35]  T. Bryllert,et al.  Vertical high-mobility wrap-gated InAs nanowire transistor , 2006, IEEE Electron Device Letters.

[36]  Byung-Gook Park,et al.  Design optimization of gate-all-around (GAA) MOSFETs , 2006 .

[37]  K. Yahashi,et al.  Process integration technology and device characteristics of CMOS FinFET on bulk silicon substrate with sub-10 nm fin width and 20 nm gate length , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[38]  Yiming Li,et al.  Investigation of electrical characteristics on surrounding-gate and omega-shaped-gate nanowire FinFETs , 2005 .

[39]  Lars Samuelson,et al.  Role of surface diffusion in chemical beam epitaxy of InAs nanowires , 2004 .

[40]  Yiming Li,et al.  Simulation of electrical characteristics of surrounding- and omega-shaped-gate nanowire FinFETs , 2004, 4th IEEE Conference on Nanotechnology, 2004..

[41]  Jin Young Kim,et al.  Fin width scaling criteria of body-tied FinFET in sub-50 nm regime , 2004, Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC..

[42]  M. Meyyappan,et al.  Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor , 2004 .

[43]  Lars Samuelson,et al.  Self-forming nanoscale devices , 2003 .

[44]  Jean-Pierre Colinge,et al.  Multiple-gate SOI MOSFETs: device design guidelines , 2002 .

[45]  Stephen Y. Chou,et al.  Wire-channel and wrap-around-gate metal–oxide–semiconductor field-effect transistors with a significant reduction of short channel effects , 1997 .

[46]  J. Colinge,et al.  Silicon-on-insulator 'gate-all-around device' , 1990, International Technical Digest on Electron Devices.

[47]  Byung-Gook Park,et al.  Design optimization of gate-all-around (GAA) MOSFETs , 2006, IEEE Transactions on Nanotechnology.