TBA, NLO Lüscher correction, and double wrapping in twisted AdS/CFT
暂无分享,去创建一个
[1] Á. Hegedűs,et al. Quasi-local formulation of the mirror TBA , 2011, 1106.2100.
[2] Rafael I. Nepomechie,et al. Review of AdS/CFT Integrability: An Overview , 2010, Letters in Mathematical Physics.
[3] Z. Bajnok. Review of AdS/CFT Integrability, Chapter III.6: Thermodynamic Bethe Ansatz , 2010, 1012.3995.
[4] V. Kazakov,et al. Review of AdS/CFT Integrability, Chapter III.7: Hirota Dynamics for Quantum Integrability , 2010, 1012.3996.
[5] Á. Hegedűs,et al. AdS5 × S5 mirror TBA equations from Y-system and discontinuity relations , 2011, 1104.4054.
[6] M. Beccaria,et al. Y-system for ZS orbifolds of N = 4 SYM , 2011 .
[7] M. Beccaria,et al. Y-system for $ {\mathbb{Z}_S} $ orbifolds of $ \mathcal{N} = 4 $ SYM , 2011, 1104.0883.
[8] M. Leeuw,et al. Orbifolded Konishi from the mirror TBA , 2011, 1103.5853.
[9] G. Arutyunov,et al. Comments on the mirror TBA , 2011, 1103.2708.
[10] A. Cavaglià,et al. On the AdS$_5$/CFT$_4$ TBA and its analytic properties (Infinite Analysis 2010 Developments in Quantum Integrable Systems) , 2011, 1103.0499.
[11] Ryo Suzuki. Hybrid NLIE for the mirror AdS5 ×S5 , 2011, 1101.5165.
[12] C. Sieg. Review of AdS/CFT Integrability, Chapter I.2: The Spectrum from Perturbative Gauge Theory , 2010, 1012.3984.
[13] M. Leeuw,et al. Twist operators in N = 4 betadeformed theory , 2010, 1012.3725.
[14] O. Deeb,et al. 6-loop anomalous dimension of a single impurity operator from AdS/CFT and multiple zeta values , 2010, 1010.5606.
[15] V. Kazakov,et al. Wronskian solution for AdS/CFT Y-system , 2010, 1010.2720.
[16] G. Arutyunov,et al. Twisting the mirror TBA , 2010, 1009.4118.
[17] A. Cavaglià,et al. Extended Y-system for the AdS5/CFT4 correspondence , 2010, 1005.3016.
[18] Cavaglia Andrea,et al. On the AdS5/CFT4 TBA and its analytic properties , 2011 .
[19] Matthias Staudacher,et al. Review of AdS/CFT Integrability, Chapter III.1: Bethe Ansätze and the R-Matrix Formalism , 2010, 1012.3990.
[20] K. Zoubos. Review of AdS/CFT Integrability, Chapter IV.2: Deformations, Orbifolds and Open Boundaries , 2010, 1012.3998.
[21] R. Janik. Review of AdS/CFT Integrability, Chapter III.5: Lüscher Corrections , 2010, 1012.3994.
[22] Rafael I. Nepomechie,et al. Review of AdS/CFT Integrability, Chapter III.2: Exact World-Sheet S-Matrix , 2010, 1012.3991.
[23] Rafael I. Nepomechie,et al. Twisted Bethe equations from a twisted S-matrix , 2010, 1010.3229.
[24] N. Gromov,et al. Y-system and β-deformed N = 4 super-Yang–Mills , 2010, 1006.5438.
[25] Rafael I. Nepomechie,et al. Finite-size effect for four-loop Konishi of the β-deformed N=4 SYM , 2010, 1006.2209.
[26] J. Balog,et al. The Bajnok-Janik formula and wrapping corrections , 2010, 1003.4303.
[27] V. Kazakov,et al. PSU(2, 2|4) character of quasiclassical AdS/CFT , 2010, 1002.3981.
[28] J. Balog,et al. 5-loop Konishi from linearized TBA and the XXX magnet , 2010, 1002.4142.
[29] Ryo Suzuki,et al. Five-loop Konishi from the mirror TBA , 2010, 1002.1711.
[30] Ryo Suzuki,et al. Exploring the mirror TBA , 2009, 0911.2224.
[31] Á. Hegedűs. Discrete Hirota dynamics for AdS/CFT , 2009, 0906.2546.
[32] I. Gorelov,et al. Measurement of the W ---> l ν and Z/γ* ---> l+ l- production cross sections in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector , 2010 .
[33] V. Kazakov,et al. Exact Spectrum of Anomalous Dimensions of Planar N = 4 Supersymmetric Yang–Mills Theory: TBA and excited states , 2010, Physical review letters.
[34] V. Kazakov,et al. Exact Spectrum of Anomalous Dimensions of Planar N = 4 Supersymmetric Yang-Mills Theory , 2009 .
[35] G. Arutyunov,et al. Simplified TBA equations of the AdS5 × S5 mirror model , 2009, 0907.2647.
[36] Ryo Suzuki,et al. Temperature quantization from the TBA equations , 2009, 0906.0499.
[37] G. Arutyunov,et al. The dressing factor and crossing equations , 2009, 0904.4575.
[38] G. Arutyunov,et al. Thermodynamic Bethe Ansatz for the AdS_5 x S^5 Mirror Model , 2009, 0903.0141.
[39] R. Tateo,et al. Thermodynamic Bethe ansatz for planar AdS/CFT: a proposal , 2009, 0902.3930.
[40] G. Arutyunov,et al. The bound state S-matrix for AdS5×S5AdS5×S5 superstring , 2009, 0902.0183.
[41] G. Arutyunov,et al. String hypothesis for the AdS5 × S5 mirror , 2009, 0901.1417.
[42] V. Kazakov,et al. Finite volume spectrum of 2D field theories from Hirota dynamics , 2008, 0812.5091.
[43] R. Janik,et al. Four-loop perturbative Konishi from strings and finite size effects for multiparticle states , 2008, 0807.0399.
[44] C Kristjansen, M Staudacher and A Tseytlin. Gauge–string duality and integrability: progress and outlook , 2009 .
[45] G. Arutyunov,et al. The S-matrix of string bound states , 2008, 0803.4323.
[46] G. Arutyunov,et al. On string S-matrix, bound states and TBA , 2007, 0710.1568.
[47] N. Beisert. The S-Matrix of AdS/CFT and Yangian Symmetry , 2007, 0704.0400.
[48] S. Kovacs,et al. Proof of ultraviolet finiteness for a planar non-supersymmetric Yang–Mills theory , 2007, hep-th/0702020.
[49] G. Arutyunov,et al. The Zamolodchikov-Faddeev Algebra for AdS5 x S5 Superstring , 2006, hep-th/0612229.
[50] S. Kovacs,et al. Proof of ultra-violet finiteness for a planar non-supersymmetric Yang–Mills theory , 2007 .
[51] R. Janik,et al. Wrapping interactions and a new source of corrections to the spin-chain/string duality , 2005, hep-th/0510171.
[52] R. Roiban,et al. Gauge-string duality for (non)supersymmetric deformations of N=4 super-Yang–Mills theory , 2005, hep-th/0507021.
[53] R. Roiban,et al. Beauty and the twist: the Bethe ansatz for twisted = 4 SYM , 2005, hep-th/0505187.
[54] S. Frolov. Lax pair for strings in Lunin-Maldacena background , 2005, hep-th/0503201.
[55] J. Maldacena,et al. Deforming field theories with U(1) × U(1) global symmetry and their gravity duals , 2005, hep-th/0502086.
[56] G. Takács,et al. Finite size effects in quantum field theories with boundary from scattering data , 2004, hep-th/0412192.
[57] Z. Bajnok,et al. From Defects to Boundaries , 2004, hep-th/0404199.
[58] C. Rim,et al. Integrable quantum field theory with boundaries: the exact g-function , 2004, hep-th/0404014.
[59] Á. Hegedűs,et al. Virial expansion and TBA in O (N) sigma-models , 2001, hep-th/0108071.
[60] Jonathan M. Borwein,et al. Special values of multiple polylogarithms , 1999, math/9910045.
[61] A. Zamolodchikov,et al. Massless factorized scattering and sigma models with topological terms , 1992 .
[62] E. Melzer,et al. The thermodynamics of purely elastic scattering theories and conformal perturbation theory , 1991 .
[63] Nicolai Reshetikhin,et al. Multiparameter quantum groups and twisted quasitriangular Hopf algebras , 1990 .
[64] P. Kulish,et al. Spectral resolution of su(3)-invariant solutions of the Yang-Baxter equation , 1986 .
[65] N. Reshetikhin,et al. Yang-Baxter equation and representation theory: I , 1981 .
[66] Alexander B. Zamolodchikov,et al. Relativistic factorized S-matrix in two dimensions having O( N) isotopic symmetry , 1978 .