An extension of the ranked set sampling theory

Abstract This paper is concerned with ranked set sampling theory which is useful to estimate the population mean when the order of a sample of small size can be found without measurements or with rough methods. Consider n sets of elements each set having size m. All elements of each set are ranked but only one is selected and quantified. The average of the quantified elements is adopted as the estimator. In this paper we introduce the notion of selective probability which is a generalization of a notion from Yanagawa and Shirahata (1976). Uniformly optimal unbiased procedures are found for some (n,m). Furthermore, procedures which are unbiased for all distributions and are good for symmetric distributions are studied for (n,m) which do not allow uniformly optimal unbiased procedures.