CHARMM‐GUI ligand reader and modeler for CHARMM force field generation of small molecules

Reading ligand structures into any simulation program is often nontrivial and time consuming, especially when the force field parameters and/or structure files of the corresponding molecules are not available. To address this problem, we have developed Ligand Reader & Modeler in CHARMM‐GUI. Users can upload ligand structure information in various forms (using PDB ID, ligand ID, SMILES, MOL/MOL2/SDF file, or PDB/mmCIF file), and the uploaded structure is displayed on a sketchpad for verification and further modification. Based on the displayed structure, Ligand Reader & Modeler generates the ligand force field parameters and necessary structure files by searching for the ligand in the CHARMM force field library or using the CHARMM general force field (CGenFF). In addition, users can define chemical substitution sites and draw substituents in each site on the sketchpad to generate a set of combinatorial structure files and corresponding force field parameters for throughput or alchemical free energy simulations. Finally, the output from Ligand Reader & Modeler can be used in other CHARMM‐GUI modules to build a protein‐ligand simulation system for all supported simulation programs, such as CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Ligand Reader & Modeler is available as a functional module of CHARMM‐GUI at http://www.charmm-gui.org/input/ligandrm. © 2017 Wiley Periodicals, Inc.

[1]  Alexander D. MacKerell,et al.  Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. , 2012, Journal of chemical theory and computation.

[2]  Alexander D. MacKerell,et al.  CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field , 2015, Journal of chemical theory and computation.

[3]  Julia Martin,et al.  Pattern , 2005, The Fairchild Books Dictionary of Fashion.

[4]  Jennifer L. Knight,et al.  Multi-Site λ-dynamics for simulated Structure-Activity Relationship studies. , 2011, Journal of chemical theory and computation.

[5]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[6]  Arthur Dalby,et al.  Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited , 1992, J. Chem. Inf. Comput. Sci..

[7]  Klaus Schulten,et al.  Rapid parameterization of small molecules using the force field toolkit , 2013, J. Comput. Chem..

[8]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing , 2012, J. Chem. Inf. Model..

[9]  N. Schormann,et al.  Crystal Structures of Group B Streptococcus Glyceraldehyde-3-Phosphate Dehydrogenase: Apo-Form, Binary and Ternary Complexes , 2016, PloS one.

[10]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[11]  Charles L. Brooks,et al.  λ‐dynamics: A new approach to free energy calculations , 1996 .

[12]  Zukang Feng,et al.  The chemical component dictionary: complete descriptions of constituent molecules in experimentally determined 3D macromolecules in the Protein Data Bank , 2015, Bioinform..

[13]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[14]  Peter Willett,et al.  Maximum common subgraph isomorphism algorithms for the matching of chemical structures , 2002, J. Comput. Aided Mol. Des..

[15]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[16]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[17]  Alexander D. MacKerell,et al.  Impact of 2′‐hydroxyl sampling on the conformational properties of RNA: Update of the CHARMM all‐atom additive force field for RNA , 2011, J. Comput. Chem..

[18]  M. A. González,et al.  Force fields and molecular dynamics simulations , 2011 .

[19]  Klaus Schulten,et al.  CHARMM-GUI PACE CG Builder for Solution, Micelle, and Bilayer Coarse-Grained Simulations , 2014, J. Chem. Inf. Model..

[20]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[21]  Jacob D. Durrant,et al.  Molecular dynamics simulations and drug discovery , 2011, BMC Biology.

[22]  Sunhwan Jo,et al.  CHARMM‐GUI Membrane Builder toward realistic biological membrane simulations , 2014, J. Comput. Chem..

[23]  Frank Harary,et al.  Graph Theory , 2016 .

[24]  A. D. Clark,et al.  Crystal structures of 8-Cl and 9-Cl TIBO complexed with wild-type HIV-1 RT and 8-Cl TIBO complexed with the Tyr181Cys HIV-1 RT drug-resistant mutant. , 1996, Journal of molecular biology.

[25]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[26]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[27]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[28]  Josep Ramón Goñi,et al.  Molecular dynamics simulations: advances and applications , 2015, Advances and applications in bioinformatics and chemistry : AABC.

[29]  Mario Vento,et al.  A (sub)graph isomorphism algorithm for matching large graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  VINCENT ZOETE,et al.  SwissParam: A fast force field generation tool for small organic molecules , 2011, J. Comput. Chem..

[31]  Benoît Roux,et al.  AUTOMATED FORCE FIELD PARAMETERIZATION FOR NON-POLARIZABLE AND POLARIZABLE ATOMIC MODELS BASED ON AB INITIO TARGET DATA. , 2013, Journal of chemical theory and computation.

[32]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[33]  Alexander D. MacKerell,et al.  CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. , 2011, Journal of chemical theory and computation.

[34]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[35]  Jeffery B. Klauda,et al.  CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. , 2009, Biophysical journal.

[36]  Helgi I Ingólfsson,et al.  CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field. , 2015, Journal of chemical theory and computation.

[37]  Sunhwan Jo,et al.  CHARMM-GUI Micelle Builder for Pure/Mixed Micelle and Protein/Micelle Complex Systems , 2013, J. Chem. Inf. Model..

[38]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[39]  Alexander D. MacKerell,et al.  CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues. , 2014, Advances in protein chemistry and structural biology.

[40]  Wei Jiang,et al.  CHARMM-GUI Ligand Binder for Absolute Binding Free Energy Calculations and Its Application , 2013, J. Chem. Inf. Model..

[41]  Wonpil Im,et al.  CHARMM-GUI HMMM Builder for Membrane Simulations with the Highly Mobile Membrane-Mimetic Model. , 2015, Biophysical journal.

[42]  Charles L. Brooks,et al.  MATCH: An atom‐typing toolset for molecular mechanics force fields , 2012, J. Comput. Chem..

[43]  John M. Barnard,et al.  Chemical Similarity Searching , 1998, J. Chem. Inf. Comput. Sci..

[44]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges , 2012, J. Chem. Inf. Model..