n-ary Isolation Forest: An Experimental Comparative Analysis

[1]  Antonio Martínez-Álvarez,et al.  Feature selection by multi-objective optimisation: Application to network anomaly detection by hierarchical self-organising maps , 2014, Knowl. Based Syst..

[2]  Christopher Leckie,et al.  High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning , 2016, Pattern Recognit..

[3]  Raymond T. Ng,et al.  Distance-based outliers: algorithms and applications , 2000, The VLDB Journal.

[4]  Witold Pedrycz,et al.  Clustering Spatiotemporal Data: An Augmented Fuzzy C-Means , 2013, IEEE Transactions on Fuzzy Systems.

[5]  Randy C. Paffenroth,et al.  Anomaly Detection with Robust Deep Autoencoders , 2017, KDD.

[6]  Clara Pizzuti,et al.  Fast Outlier Detection in High Dimensional Spaces , 2002, PKDD.

[7]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[8]  Witold Pedrycz,et al.  Anomaly detection in time series data using a fuzzy c-means clustering , 2013, 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS).

[9]  Georg Langs,et al.  Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery , 2017, IPMI.

[10]  Lovekesh Vig,et al.  Long Short Term Memory Networks for Anomaly Detection in Time Series , 2015, ESANN.

[11]  Yue Zhou,et al.  A hybrid semi-supervised approach for financial fraud detection , 2017, 2017 International Conference on Machine Learning and Cybernetics (ICMLC).

[12]  Zhi-Hua Zhou,et al.  Isolation Forest , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[13]  Fei Tony Liu,et al.  Isolation-Based Anomaly Detection , 2012, TKDD.

[14]  Witold Pedrycz,et al.  Anomaly Detection and Characterization in Spatial Time Series Data: A Cluster-Centric Approach , 2014, IEEE Transactions on Fuzzy Systems.

[15]  Witold Pedrycz,et al.  K-Means-based isolation forest , 2020, Knowl. Based Syst..

[16]  Rajeev Rastogi,et al.  Efficient algorithms for mining outliers from large data sets , 2000, SIGMOD 2000.

[17]  Ejaz Ahmed,et al.  Real-time big data processing for anomaly detection: A Survey , 2019, Int. J. Inf. Manag..

[18]  Philippe Flajolet,et al.  The Average Height of Binary Trees and Other Simple Trees , 1982, J. Comput. Syst. Sci..

[19]  Pierpaolo D'Urso,et al.  Fuzzy clustering of mixed data , 2019, Inf. Sci..

[20]  Sanjay Chawla,et al.  Deep Learning for Anomaly Detection: A Survey , 2019, ArXiv.