Hydrogen storage in carbon nanoscrolls: An atomistic molecular dynamics study

[1]  S. F. Braga,et al.  Prediction of the hydrogen storage capacity of carbon nanoscrolls , 2007 .

[2]  D. Galvão,et al.  Prediction of giant electroactuation for papyruslike carbon nanoscroll structures: First-principles calculations , 2006 .

[3]  Siegmar Roth,et al.  Hydrogen adsorption in different carbon nanostructures , 2005 .

[4]  Ray H. Baughman,et al.  Structure and dynamics of carbon nanoscrolls , 2004 .

[5]  L. Duclaux,et al.  Hydrogen adsorption in microporous alkali-doped carbons (activated carbon and single wall nanotubes) , 2004 .

[6]  Richard B. Kaner,et al.  A Chemical Route to Carbon Nanoscrolls , 2003, Science.

[7]  T. Akita,et al.  A new route to carbon nanotubes , 2003 .

[8]  D. Lévesque,et al.  Monte Carlo simulations of hydrogen storage in carbon nanotubes , 2002 .

[9]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[10]  Yuchen Ma,et al.  Hydrogen storage capacity in single-walled carbon nanotubes , 2002 .

[11]  Andreas Züttel,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[12]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[13]  Jijun Zhao,et al.  Gas molecule adsorption in carbon nanotubes and nanotube bundles , 2001, cond-mat/0110375.

[14]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[15]  X. Gong,et al.  Chemisorption of hydrogen molecules on carbon nanotubes under high pressure. , 2001, Physical review letters.

[16]  Hui-Ming Cheng,et al.  Hydrogen storage in carbon nanotubes , 2001 .

[17]  C. Gu,et al.  Simulation study of hydrogen storage in single walled carbon nanotubes , 2001 .

[18]  G. Seifert,et al.  A hydrogen storage mechanism in single-walled carbon nanotubes. , 2001, Journal of the American Chemical Society.

[19]  D. Lévesque,et al.  High Adsorptive Property of Opened Carbon Nanotubes at 77 K , 2000 .

[20]  Peter C. Eklund,et al.  Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes , 2000 .

[21]  R. T. Yang,et al.  Hydrogen storage by alkali-doped carbon nanotubes–revisited , 2000 .

[22]  Cheng,et al.  Hydrogen storage in single-walled carbon nanotubes at room temperature , 1999, Science.

[23]  S. Sinnott,et al.  Molecular dynamics simulations of the filling and decorating of carbon nanotubules , 1999 .

[24]  Chen,et al.  High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures , 1999, Science.

[25]  Kenneth A. Smith,et al.  Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes , 1999 .

[26]  J. Johnson,et al.  MOLECULAR SIMULATION OF HYDROGEN ADSORPTION IN SINGLE-WALLED CARBON NANOTUBES AND IDEALIZED CARBON SLIT PORES , 1999 .

[27]  Peter Lamp,et al.  Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes , 1998 .

[28]  Robert C. Bowman,et al.  Hydrogen desorption and adsorption measurements on graphite nanofibers , 1998 .

[29]  A. Chambers,et al.  Hydrogen Storage in Graphite Nanofibers , 1998 .

[30]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[31]  J. Mintmire,et al.  Simulations of buckminsterfullerene (C60) collisions with a hydrogen-terminated diamond {111} surface , 1991 .

[32]  T. Enoki,et al.  Hydrogen-alkali-metal-graphite ternary intercalation compounds , 1990 .

[33]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[34]  Roger Bacon,et al.  Growth, Structure, and Properties of Graphite Whiskers , 1960 .