Identification of Active Molecular Sites Using Quantum-Self-Similarity Measures

A novel approach to construct theoretical QSAR models is proposed. This technique, based on the systematic use of quantum similarity measures as theoretical molecular descriptors, opens the possibility to localize and to identify the position of the bioactive part of drug molecules in situations, where the nature of the pharmacophore is not known. To test the reliability of this new approach, the method has been applied to the study of steroids binding to corticosteroid-binding human globulin. The studied molecules involved the set of 31 Cramer's steroids, often used as a benchmark set in QSAR studies. It has been shown that theoretical QSAR models based on the present procedure are superior to those derived from alternative existing approaches. In addition, a new method to measure the statistical significance of multiparameter QSAR models is also proposed.

[1]  Emili Besalú,et al.  Fast Computation of Cross-Validated Properties in Full Linear Leave-Many-Out Procedures , 2001 .

[2]  R. Ponec,et al.  Simple analytical method for evaluation of statistical importance of correlations in QSAR studies , 2000 .

[3]  Emili Besalú,et al.  Molecular Quantum Similarity in Qsar and Drug Design , 2000 .

[4]  Emili Besalú,et al.  Quantum mechanical origin of QSAR: theory and applications , 2000 .

[5]  David Robert,et al.  Quantification of the Influence of Single-Point Mutations on Haloalkane Dehalogenase Activity: A Molecular Quantum Similarity Study , 2000, J. Chem. Inf. Comput. Sci..

[6]  R Carbó-Dorca,et al.  Simple linear QSAR models based on quantum similarity measures. , 1999, Journal of medicinal chemistry.

[7]  Ramon Carbó-Dorca,et al.  Facet diagrams for quantum similarity data , 1999, J. Comput. Aided Mol. Des..

[8]  David Robert,et al.  Aromatic Compounds Aquatic Toxicity QSAR Using Molecular Quantum Similarity Measures , 1999 .

[9]  Ramon Carbó-Dorca,et al.  Quantum similarity approach to LFER: substituent and solvent effects on the acidities of carboxylic acids , 1999 .

[10]  Ramon Carbó-Dorca,et al.  Molecular basis of quantitative structure-properties relationships (QSPR): A quantum similarity approach , 1999, J. Comput. Aided Mol. Des..

[11]  Paul L. A. Popelier,et al.  Quantum molecular similarity. 1. BCP space , 1999 .

[12]  David Robert,et al.  Three-Dimensional Quantitative Structure-Activity Relationships from Tuned Molecular Quantum Similarity Measures: Prediction of the Corticosteroid-Binding Globulin Binding Affinity for a Steroid Family , 1999, J. Chem. Inf. Comput. Sci..

[13]  W. Richards,et al.  Self-organizing molecular field analysis: a tool for structure-activity studies. , 1999, Journal of medicinal chemistry.

[14]  Paul G. Mezey,et al.  The holographic electron density theorem and quantum similarity measures , 1999 .

[15]  Ramon Carbó-Dorca,et al.  Molecular quantum similarity measures as an alternative to log P values in QSAR studies , 1998, J. Comput. Chem..

[16]  R. Carbó-Dorca,et al.  Molecular Quantum Similarity Measures Tuned 3D QSAR: An Antitumoral Family Validation Study. , 1998 .

[17]  Emili Besalú,et al.  A general survey of molecular quantum similarity , 1998 .

[18]  Ramon Carbó-Dorca,et al.  Tagged sets, convex sets and quantum similarity measures , 1998 .

[19]  D. Avnir,et al.  Properties and classification of enantiomerization pathways , 1998 .

[20]  Hongming Chen,et al.  PARM: A Genetic Evolved Algorithm To Predict Bioactivity , 1998, J. Chem. Inf. Comput. Sci..

[21]  David L. Cooper,et al.  A quantum molecular similarity approach to anti-HIV activity , 1998 .

[22]  Yukio Tominaga,et al.  Prediction-Weighted Partial Least-Squares Regression Method (PWPLS) 2: Application to CoMFA , 1997, J. Chem. Inf. Comput. Sci..

[23]  W. Graham Richards,et al.  Alignment of molecules by the Monte Carlo optimization of molecular similarity indices , 1997, J. Comput. Chem..

[24]  Peter Willett,et al.  Evaluation of a novel infrared range vibration-based descriptor (EVA) for QSAR studies. 1. General application , 1997, J. Comput. Aided Mol. Des..

[25]  Ramon Carbó-Dorca,et al.  Toward a global maximization of the molecular similarity function: Superposition of two molecules , 1997, J. Comput. Chem..

[26]  G. Maggiora,et al.  A molecular field-based similarity approach to pharmacophoric pattern recognition. , 1997, Journal of molecular graphics & modelling.

[27]  Lemont B. Kier,et al.  E-state fields: Applications to 3D QSAR , 1996, J. Comput. Aided Mol. Des..

[28]  Johann Gasteiger,et al.  The comparison of geometric and electronic properties of molecular surfaces by neural networks: Application to the analysis of corticosteroid-binding globulin activity of steroids , 1996, J. Comput. Aided Mol. Des..

[29]  Ulf Norinder,et al.  3D‐QSAR investigation of the tripos benchmark steroids and some protein‐tyrosine kinase inhibitors of styrene type using the TDQ approach , 1996 .

[30]  Emili Besalú,et al.  Quantum molecular similarity measures (QMSM) as a natural way leading towards a theoretical foundation of quantitative structure-properties relationships (QSPR) , 1995 .

[31]  David L. Cooper,et al.  Applications of momentum-space similarity , 1995, J. Comput. Aided Mol. Des..

[32]  J. Gasteiger,et al.  Autocorrelation of Molecular Surface Properties for Modeling Corticosteroid Binding Globulin and Cytosolic Ah Receptor Activity by Neural Networks , 1995 .

[33]  D. Rogers,et al.  Receptor surface models. 2. Application to quantitative structure-activity relationships studies. , 1995, Journal of medicinal chemistry.

[34]  Emili Besalú,et al.  Definition and quantum chemical applications of nested summation symbols and logical functions: Pedagogical artificial intelligence devices for formulae writing, sequential programming and automatic parallel implementation , 1995 .

[35]  R Benigni,et al.  Molecular similarity matrices and quantitative structure-activity relationships: a case study with methodological implications. , 1995, Journal of medicinal chemistry.

[36]  G. Klebe,et al.  Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. , 1994, Journal of medicinal chemistry.

[37]  A. N. Jain,et al.  Compass: predicting biological activities from molecular surface properties. Performance comparisons on a steroid benchmark. , 1994, Journal of medicinal chemistry.

[38]  Jordi Mestres,et al.  Use of ab Initio Quantum Molecular Similarities as an Interpretative Tool for the Study of Chemical Reactions , 1994 .

[39]  Emili Besalú,et al.  Definition, Mathematical Examples and Quantum Chemical Applications of Nested Summation Symbols and Logical Kronecker Deltas , 1994, Comput. Chem..

[40]  Richards Wg,et al.  QSAR's from similarity matrices. Technique validation and application in the comparison of different similarity evaluation methods. , 1993 .

[41]  A. Good,et al.  Structure-activity relationships from molecular similarity matrices. , 1993, Journal of medicinal chemistry.

[42]  Neil L. Allan,et al.  A momentum-space approach to molecular similarity , 1992, J. Chem. Inf. Comput. Sci..

[43]  Andrew C. Good,et al.  Similarity screening of molecular data sets , 1992, J. Comput. Aided Mol. Des..

[44]  David L. Cooper,et al.  A novel approach to molecular similarity , 1989, J. Comput. Aided Mol. Des..

[45]  R. Cramer,et al.  Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. , 1988, Journal of the American Chemical Society.

[46]  Ramon Carbó,et al.  LCAO–MO similarity measures and taxonomy† , 1987 .

[47]  Edward E. Hodgkin,et al.  Molecular similarity based on electrostatic potential and electric field , 1987 .

[48]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[49]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[50]  David L. Cooper,et al.  Ab initio computation of molecular similarity , 1985 .

[51]  M. Persico,et al.  Avoided crossing of molecular excited states and photochemistry: Butadiene and unprotonated Schiff base , 1983 .

[52]  Ramon Carbo,et al.  How similar is a molecule to another? An electron density measure of similarity between two molecular structures , 1980 .

[53]  S. Wold Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models , 1978 .

[54]  David Robert,et al.  Quantum similarity QSAR: Study of inhibitors binding to thrombin, trypsin, and factor Xa, including a comparison with CoMFA and CoMSIA methods , 2000 .

[55]  R. Carbó-Dorca Stochastic transformation of quantum similarity matrices and their use in quantum QSAR (QQSAR) models , 2000 .

[56]  Jordi Mestres,et al.  A molecular-field-based similarity study of non-nucleoside HIV-1 reverse transcriptase inhibitors , 1999, J. Comput. Aided Mol. Des..

[57]  Daniel E. Platt,et al.  Comparative molecular moment analysis (CoMMA) , 1998 .

[58]  Roberto Todeschini,et al.  MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: A comparative 3D QSAR study in a series of steroids , 1997, J. Comput. Aided Mol. Des..

[59]  Gordon M. Crippen,et al.  Objective models for steroid binding sites of human globulins , 1997, J. Comput. Aided Mol. Des..

[60]  Emili Besalú,et al.  Structure‐Activity Relationships of a Steroid Family using Quantum Similarity Measures and Topological Quantum Similarity Indices , 1997 .

[61]  M Karplus,et al.  Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Method and validations. , 1997, Journal of medicinal chemistry.

[62]  Emili Besalú,et al.  Molecular Quantum Similarity: theoretical Framework, Ordering Principles, and Visualization Techniques12 , 1994 .

[63]  Chengteh Lee,et al.  An approach to molecular similarity using density functional theory , 1994 .

[64]  Tudor I. Oprea,et al.  Comparison of the Minimal Steric Difference (MTD) and Comparative Molecular Field Analysis (CoMFA) Methods for Analysis of Binding of Steroids to Carrier Proteins , 1993 .

[65]  S. Wold Validation of QSAR's , 1991 .

[66]  Eugene D. Fleischmann,et al.  Assessing molecular similarity from results of ab initio electronic structure calculations , 1991 .

[67]  R. Ponec Topological aspects of chemical reactivity. On the similarity of molecular structures , 1987 .