Brief Definitive Report

Modulation of orexin and its effects on sleep/wakefulness affect amyloid-β pathology in the brain of mouse models for Alzheimer’s disease.

[1]  Sebastiaan Overeem,et al.  Effect of 1 night of total sleep deprivation on cerebrospinal fluid β-amyloid 42 in healthy middle-aged men: a randomized clinical trial. , 2014, JAMA neurology.

[2]  D. Holtzman,et al.  Neuronal activity regulates extracellular tau in vivo. , 2014, The Journal of experimental medicine.

[3]  D. Holtzman,et al.  Sleep and Alzheimer disease pathology—a bidirectional relationship , 2014, Nature Reviews Neurology.

[4]  Susan M Resnick,et al.  Self-reported sleep and β-amyloid deposition in community-dwelling older adults. , 2013, JAMA neurology.

[5]  Daniel J. R. Christensen,et al.  Sleep Drives Metabolite Clearance from the Adult Brain , 2013, Science.

[6]  D. Holtzman,et al.  Sleep evaluation by actigraphy for patients with Alzheimer disease--reply. , 2013, JAMA neurology.

[7]  Adam W. Bero,et al.  Disruption of the Sleep-Wake Cycle and Diurnal Fluctuation of β-Amyloid in Mice with Alzheimer’s Disease Pathology , 2012, Science Translational Medicine.

[8]  D. Holtzman,et al.  Mapping the Road Forward in Alzheimer’s Disease , 2011, Science Translational Medicine.

[9]  Denise C. Park,et al.  Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease , 2011, Alzheimer's & Dementia.

[10]  I. Fried,et al.  Regional Slow Waves and Spindles in Human Sleep , 2011, Neuron.

[11]  G. Tononi,et al.  Local sleep in awake rats , 2011, Nature.

[12]  Jee Hoon Roh,et al.  Neuronal activity regulates the regional vulnerability to amyloid-β deposition , 2011, Nature Neuroscience.

[13]  K. Deisseroth,et al.  Tuning arousal with optogenetic modulation of locus coeruleus neurons , 2010, Nature Neuroscience.

[14]  John X. Morris,et al.  Spatial correlation between brain aerobic glycolysis and amyloid-β (Aβ) deposition , 2010, Proceedings of the National Academy of Sciences.

[15]  D. Holtzman,et al.  Overexpression of Low-Density Lipoprotein Receptor in the Brain Markedly Inhibits Amyloid Deposition and Increases Extracellular Aβ Clearance , 2009, Neuron.

[16]  Seiji Nishino,et al.  Amyloid-β Dynamics Are Regulated by Orexin and the Sleep-Wake Cycle , 2009, Science.

[17]  G. Tononi,et al.  Cortical Firing and Sleep Homeostasis , 2009, Neuron.

[18]  Yan Wang,et al.  Characterizing the Appearance and Growth of Amyloid Plaques in APP/PS1 Mice , 2009, The Journal of Neuroscience.

[19]  M. Osterhold,et al.  Characterizing the appearance of medium glossy surfaces , 2009 .

[20]  T. Sakurai,et al.  Selective loss of GABAB receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture , 2009, Proceedings of the National Academy of Sciences.

[21]  D. Holtzman,et al.  Rapid Microglial Response Around Amyloid Pathology after Systemic Anti-Aβ Antibody Administration in PDAPP Mice , 2008, The Journal of Neuroscience.

[22]  Guojun Bu,et al.  Endocytosis Is Required for Synaptic Activity-Dependent Release of Amyloid-β In Vivo , 2008, Neuron.

[23]  Hartwig Wolburg,et al.  Aβ42‐driven cerebral amyloidosis in transgenic mice reveals early and robust pathology , 2006, EMBO reports.

[24]  Joanna L. Jankowsky,et al.  Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase , 2004 .

[25]  D. Holtzman,et al.  In Vivo Assessment of Brain Interstitial Fluid with Microdialysis Reveals Plaque-Associated Changes in Amyloid-β Metabolism and Half-Life , 2003, The Journal of Neuroscience.

[26]  R. Malinow,et al.  APP Processing and Synaptic Function , 2003, Neuron.

[27]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[28]  Jon T. Willie,et al.  Narcolepsy in orexin Knockout Mice Molecular Genetics of Sleep Regulation , 1999, Cell.

[29]  F E Bloom,et al.  The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.