Novel hybrid polymer photovoltaics made by generating silver nanoparticles in polymer:fullerene bulk-heterojunction structures

Abstract Here, we developed the high efficient poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid butyl ester (PCBB):Ag nanoparticle hybrid photovoltaic cells by generating the silver nanoparticles in the bulk-heterojunction structures of P3HT:PCBB prior to the spin-coating process. Hybrid bulk-heterojunction solar cells with an ITO/(G)-PEDOT/P3HT:PCBB:Ag/Al was fabricated, which shows open-circuit voltage, short-circuit current density, and power conversion efficiency of 0.639 V, 12.29 mA/cm2, and 4.30% under AM1.5 irradiation (100 mW/cm2), respectively.

[1]  P. Kuo,et al.  Formation of silver nanoparticles under structured amino groups in pseudo-dendritic poly(allylamine) derivatives , 2003 .

[2]  Yuewu Zeng,et al.  The role of poly(ethylene glycol) in the formation of silver nanoparticles. , 2005, Journal of colloid and interface science.

[3]  Yi-Kai Lin,et al.  Modified buffer layers for polymer photovoltaic devices , 2007 .

[4]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[5]  René A. J. Janssen,et al.  Polymer-Fullerene Bulk Heterojunction Solar Cells , 2005 .

[6]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[7]  C. Ho,et al.  Nanoseparated Polymeric Networks with Multiple Antimicrobial Properties , 2004 .

[8]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[9]  F. Krebs,et al.  Low band gap polymers for organic photovoltaics , 2007 .

[10]  R. Friend,et al.  Morphological and electronic consequences of modifications to the polymer anode ‘PEDOT:PSS’ , 2005 .

[11]  Cyril Aymonier,et al.  Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. , 2002, Chemical communications.

[12]  Mats Andersson,et al.  Polymer Photovoltaic Cells with Conducting Polymer Anodes , 2002 .

[13]  P. C. Chui,et al.  Influence of solvent on film morphology and device performance of poly(3-hexylthiophene):TiO2 nanocomposite solar cells , 2004 .

[14]  Niyazi Serdar Sariciftci,et al.  Effects of Annealing on the Nanomorphology and Performance of Poly(alkylthiophene):Fullerene Bulk‐Heterojunction Solar Cells , 2007 .

[15]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[16]  Jie Yao,et al.  Preparation and Characterization of Fulleroid and Methanofullerene Derivatives , 1995 .

[17]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[18]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[19]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[20]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[21]  Dieter Meissner,et al.  Hybrid Solar Cells Based on Nanoparticles of CuInS2 in Organic Matrices , 2003 .

[22]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[23]  Marija Drndic,et al.  Efficient polymer-nanocrystal quantum-dot photodetectors , 2005 .

[24]  Frederik C. Krebs,et al.  A brief history of the development of organic and polymeric photovoltaics , 2004 .

[25]  Jae Wook Lee,et al.  Optimization of process parameters for high-efficiency polymer photovoltaic devices based on P3HT:PCBM system , 2007 .

[26]  David L Carroll,et al.  Meso-structure formation for enhanced organic photovoltaic cells. , 2005, Organic letters.