The Beta Titanium Alloys

The beta titanium alloys offer many advantages in terms of processing, mechanical properties, and low cost of fabricated components compared to conventional titanium alloys. However, in the past, melting difficulties, reproducibility problems, and the conservatism of designers resulted in only one major application—on the SR-71 “Blackbird,” Mach 3+ surveillance airplane. This paper discusses the characteristics of the beta titanium alloys— from melting, through processing, to final microstructure and mechanical properties— and suggests that with recent advances the time is now ripe for the titanium community to successfully fend off competition from other materials by making increased use of this alloy class.*

[1]  F. H. Froes,et al.  Relationship of fracture toughness and ductility to microstructure and fractographic features in advanced deep hardenable titanium alloys , 1978 .

[2]  F. H. Froes,et al.  Titanium P/M comes of age , 1984 .

[3]  A. D. McQuillan,et al.  The science technology and application of titanium , 1971 .

[4]  F. H. Froes,et al.  Thermal stability of an advanced high speed aircraft alloy , 1977 .

[5]  F. Froes,et al.  The relationship between microstructure and age hardening response in the metastable beta titanium alloy Ti- 11.5 Mo-6 Zr-4.5 Sn (beta III) , 1980 .

[6]  Francis H. Froes,et al.  Developments in Titanium Metal Matrix Composites , 1984 .

[7]  F. Froes,et al.  Effect of α-phase morphology and distribution on the tensile ductility of a metastable beta titanium alloy , 1977 .

[8]  Francis H. Froes,et al.  Powder Metallurgy of Light Metal Alloys for Demanding Applications , 1984 .

[9]  J. Szekely Radically innovative steelmaking technologies , 1980 .

[10]  F. Froes,et al.  The Melting of Titanium , 1984 .

[11]  F. Froes,et al.  Decoration of plastically strained regions in metallic systems , 1976 .

[12]  F. Froes,et al.  Production of Rapidly Solidified Metals and Alloys , 1984 .

[13]  F. Froes,et al.  Developments in Titanium Alloy Casting Technology , 1983 .

[14]  C. Levi,et al.  Heat flow in atomized metal droplets , 1980 .

[15]  M. Hansen,et al.  Constitution of Binary Alloys , 1958 .

[16]  F. Froes,et al.  Alloying element effects in metastable beta titanium alloys , 1979 .

[17]  Francis H. Froes,et al.  Titanium Net-Shape Technologies , 1984 .

[18]  F. Froes,et al.  Recrystallization and grain growth in metastable beta III titanium alloy , 1979 .

[19]  H. Bomberger Low melting hypereutectoid titanium-copper alloys , 1980 .

[20]  G. Lutjering,et al.  Titanium: Science and Technology , 1985 .

[21]  Francis H. Froes,et al.  Advances in Titanium Extraction Metallurgy , 1984 .

[22]  A. F. Belov,et al.  Titanium and titanium alloys : scientific and technological aspects , 1982 .

[23]  R. Broadwell,et al.  Toughness and Fracture Behavior of Titanium , 1978 .

[24]  F. Froes,et al.  Interrelations between fracture toughness and other mechanical properties in titanium alloys , 1977 .

[25]  A BERGSTRAND,et al.  [THE MORPHOLOGY OF THE CELL]. , 1965, Svensk tandlakare tidskrift. Swedish dental journal.

[26]  F. Froes,et al.  High-Temperature Titanium Alloys—A Review , 1984 .

[27]  A. G. Jackson,et al.  The effect of cooling conditions on the microstructure of rapidly solidified Ti-6Al-4V , 1985 .

[28]  F. Froes,et al.  Revealing deformed and recrystallized structures in beta titanium alloys , 1984 .