Vapoluminescence Behavior Triggered by Crystal-State Complexation between Host Crystals and Guest Vapors Exhibiting No Visible Fluorescence

A rational design to create vapoluminescence materials is to install fluorescent tags into molecules. Changing the distance and arrangement of the fluorescent tags can be performed to trigger the v...

[1]  J. Lang,et al.  Ultrafast Luminescent Light-Up Guest Detection Based on the Lock of the Host Molecular Vibration. , 2020, Journal of the American Chemical Society.

[2]  R. Hoogenboom,et al.  Structural Diversification of Pillar[n]arene Macrocycles. , 2020, Angewandte Chemie.

[3]  C. Tung,et al.  BowtieArene: A Dual Macrocycle Exhibiting Stimuli-Responsive Fluorescence. , 2019, Angewandte Chemie.

[4]  Kejie Du,et al.  The Trouble with Five: New Synthetic Strategies toward C5 -Symmetric Pillar[5]arenes and Beyond , 2019, Synlett.

[5]  Feihe Huang,et al.  Alkyl Chain Length-Selective Vapor-Induced Fluorochromism of Pillar[5]arene-Based Nonporous Adaptive Crystals. , 2019, Journal of the American Chemical Society.

[6]  M. Hasegawa,et al.  Soft Crystals: Flexible Response Systems with High Structural Order , 2019, Chemistry.

[7]  A. Balch,et al.  Vapoluminescent Behavior and the Single-Crystal-to-Single-Crystal Transformations of Chloroform Solvates of [Au2 (μ-1,2-bis(diphenylarsino)ethane)2 ](AsF6 )2. , 2018, Chemistry.

[8]  Nan Song,et al.  Molecular-Scale Porous Materials Based on Pillar[n]arenes , 2018, Chem.

[9]  Feihe Huang,et al.  Nonporous Adaptive Crystals of Pillararenes. , 2018, Accounts of chemical research.

[10]  Feihe Huang,et al.  Aliphatic Aldehyde Detection and Adsorption by Nonporous Adaptive Pillar[4]arene[1]quinone Crystals with Vapochromic Behavior. , 2018, ACS applied materials & interfaces.

[11]  T. Ogoshi,et al.  Stimuli-Responsive Supramolecular Assemblies Constructed from Pillar[ n]arenes. , 2018, Accounts of chemical research.

[12]  Feihe Huang,et al.  Near-Ideal Xylene Selectivity in Adaptive Molecular Pillar[n]arene Crystals , 2018, Journal of the American Chemical Society.

[13]  Kazuki Saito,et al.  Separation of Linear and Branched Alkanes Using Host-Guest Complexation of Cyclic and Branched Alkane Vapors by Crystal State Pillar[6]arene. , 2018, Angewandte Chemie.

[14]  Y. Sakata,et al.  Alkane-Shape-Selective Vapochromic Behavior Based on Crystal-State Host-Guest Complexation of Pillar[5]arene Containing One Benzoquinone Unit. , 2017, Journal of the American Chemical Society.

[15]  Feihe Huang,et al.  Styrene Purification by Guest-Induced Restructuring of Pillar[6]arene , 2017, Journal of the American Chemical Society.

[16]  A. Kobayashi,et al.  Stimuli-responsive Luminescent Copper(I) Complexes for Intelligent Emissive Devices , 2017 .

[17]  Toshikazu Ono,et al.  Turn-On Fluorogenic and Chromogenic Detection of Small Aromatic Hydrocarbon Vapors by a Porous Supramolecular Host. , 2016, Chemistry.

[18]  H. Uekusa,et al.  Powder Structure Analysis of Vapochromic Quinolone Antibacterial Agent Crystals , 2016 .

[19]  Yoshiaki Nakamoto,et al.  Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry. , 2016, Chemical reviews.

[20]  Rui‐Biao Lin,et al.  Photoluminescent Metal–Organic Frameworks for Gas Sensing , 2016, Advanced science.

[21]  Wei Zheng,et al.  Vapochromic Behavior of a Chair-Shaped Supramolecular Metallacycle with Ultra-Stability. , 2016, Journal of the American Chemical Society.

[22]  Y. Sakata,et al.  Host-Guest Complexation of Perethylated Pillar[5]arene with Alkanes in the Crystal State. , 2015, Angewandte Chemie.

[23]  M. Sugimoto,et al.  Multicomponent Molecular Puzzles for Photofunction Design: Emission Color Variation in Lewis Acid-Base Pair Crystals Coupled with Guest-to-Host Charge Transfer Excitation. , 2015, Journal of the American Chemical Society.

[24]  Y. Chujo,et al.  o-Carborane-based anthracene: a variety of emission behaviors. , 2015, Angewandte Chemie.

[25]  Severin T. Schneebeli,et al.  Functionalizing pillar[n]arenes. , 2014, Accounts of chemical research.

[26]  William R. Dichtel,et al.  Direct detection of RDX vapor using a conjugated polymer network. , 2013, Journal of the American Chemical Society.

[27]  T. Ogoshi,et al.  Pillararenes: Versatile Synthetic Receptors for Supramolecular Chemistry , 2013 .

[28]  William R. Dichtel,et al.  Conjugated Porous Polymers For TNT Vapor Detection. , 2013, ACS macro letters.

[29]  O. Wenger,et al.  Vapochromism in organometallic and coordination complexes: chemical sensors for volatile organic compounds. , 2013, Chemical reviews.

[30]  E. Yashima,et al.  Main-chain optically active riboflavin polymer for asymmetric catalysis and its vapochromic behavior. , 2012, Journal of the American Chemical Society.

[31]  R. White-Morris,et al.  Crystallization and interconversions of vapor-sensitive, luminescent polymorphs of [(C6H11NC)2Au(I)](AsF6) and [(C6H11NC)2Au(I)](PF6). , 2012, Journal of the American Chemical Society.

[32]  Yong Yang,et al.  Pillararenes, a new class of macrocycles for supramolecular chemistry. , 2012, Accounts of chemical research.

[33]  S. Kitagawa,et al.  Molecular decoding using luminescence from an entangled porous framework , 2011, Nature Communications.

[34]  Yoshiaki Nakamoto,et al.  para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. , 2008, Journal of the American Chemical Society.

[35]  T. Swager,et al.  Conjugated polymer-based chemical sensors. , 2000, Chemical reviews.

[36]  T. Swager,et al.  Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects , 1998 .