Fault Isolation for Spacecraft Systems: An Application to a Power Distribution Testbed

Abstract Modern electrical power disribution systems play a critical role in system operations. Therefore, early fault detection and isolation is essential to maintaining system safety and avoiding catastrophic failures. This paper discusses a fault isolation scheme based on a qualitative fault signature-based isolation mechanism that applies to abrupt, incipient and intermittent faults in the system. We discuss the isolation algorithms for a combination of these faults, and demonstrate their performance on a set of test cases generated from a NASA Ames spacecraft power distribution testbed. Our results show good isolation accuracy with 103 out of 134 faulty scenarios isolated correctly. Most of the isolation errors can be attributed to errors in the detection scheme.