Pathogens, toxins, and lipid rafts

[1]  L. Abrami,et al.  Plasma Membrane Microdomains Act as Concentration Platforms to Facilitate Intoxication by Aerolysin , 1999, The Journal of cell biology.

[2]  M. Lindsay,et al.  Exploitation of major histocompatibility complex class I molecules and caveolae by simian virus 40 , 1999, Immunological reviews.

[3]  D. Hoessli,et al.  Microdomain-dependent regulation of Lck and Fyn protein-tyrosine kinases in T lymphocyte plasma membranes. , 1999, Molecular biology of the cell.

[4]  K. Jacobson,et al.  Looking at lipid rafts? , 1999, Trends in cell biology.

[5]  W. Seeger,et al.  Role of Listeria monocytogenes Exotoxins Listeriolysin and Phosphatidylinositol-Specific Phospholipase C in Activation of Human Neutrophils , 1999, Infection and Immunity.

[6]  J. Hsuan,et al.  Epidermal growth factor receptor activation is localized within low-buoyant density, non-caveolar membrane domains. , 1999, The Biochemical journal.

[7]  S. Bhakdi,et al.  Oligomerization of Vibrio cholerae Cytolysin Yields a Pentameric Pore and Has a Dual Specificity for Cholesterol and Sphingolipids in the Target Membrane* , 1999, The Journal of Biological Chemistry.

[8]  J. Olivo,et al.  Interferon α Inhibits a Src-mediated Pathway Necessary for Shigella-induced Cytoskeletal Rearrangements in Epithelial Cells , 1998, The Journal of cell biology.

[9]  R. Munford,et al.  Bacterial lipopolysaccharide can enter monocytes via two CD14-dependent pathways. , 1998, Journal of immunology.

[10]  K. Simons,et al.  The differential miscibility of lipids as the basis for the formation of functional membrane rafts. , 1998, Biochimica et biophysica acta.

[11]  Richard G. W. Anderson,et al.  Role of plasmalemmal caveolae in signal transduction. , 1998, American journal of physiology. Lung cellular and molecular physiology.

[12]  A. Servin,et al.  Piracy of Decay-Accelerating Factor (CD55) Signal Transduction by the Diffusely Adhering Strain Escherichia coli C1845 Promotes Cytoskeletal F-Actin Rearrangements in Cultured Human Intestinal INT407 Cells , 1998, Infection and Immunity.

[13]  K. Solomon,et al.  Determination of the non-ionic detergent insolubility and phosphoprotein associations of glycosylphosphatidylinositol-anchored proteins expressed on T cells. , 1998, The Biochemical journal.

[14]  T. Kurzchalia,et al.  Microdomains of GPI-anchored proteins in living cells revealed by crosslinking , 1998, Nature.

[15]  S. Mayor,et al.  GPI-anchored proteins are organized in submicron domains at the cell surface , 1998, Nature.

[16]  K. Krause,et al.  Aerolysin Induces G-protein Activation and Ca2+Release from Intracellular Stores in Human Granulocytes* , 1998, The Journal of Biological Chemistry.

[17]  H. Ikezawa,et al.  Molecular cloning of a GPI-anchored aminopeptidase N from Bombyx mori midgut: a putative receptor for Bacillus thuringiensis CryIA toxin. , 1998, Gene.

[18]  J. Wehland,et al.  Listeriolysin O: cholesterol inhibits cytolysis but not binding to cellular membranes , 1998, Molecular microbiology.

[19]  B. Strooper,et al.  Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Kai Simons,et al.  Lipid Domain Structure of the Plasma Membrane Revealed by Patching of Membrane Components , 1998, The Journal of cell biology.

[21]  James L. Madara,et al.  Ganglioside Structure Dictates Signal Transduction by Cholera Toxin and Association with Caveolae-like Membrane Domains in Polarized Epithelia , 1998, The Journal of cell biology.

[22]  P. Orlandi,et al.  Filipin-dependent Inhibition of Cholera Toxin: Evidence for Toxin Internalization and Activation through Caveolae-like Domains , 1998, The Journal of cell biology.

[23]  M. Umeda,et al.  Lysenin, a Novel Sphingomyelin-specific Binding Protein* , 1998, The Journal of Biological Chemistry.

[24]  N. Hooper,et al.  Membrane biology: Do glycolipid microdomains really exist? , 1998, Current Biology.

[25]  L. Abrami,et al.  A Pore-forming Toxin Interacts with a GPI-anchored Protein and Causes Vacuolation of the Endoplasmic Reticulum , 1998, The Journal of cell biology.

[26]  D. Diep,et al.  Glycosylphosphatidylinositol Anchors of Membrane Glycoproteins Are Binding Determinants for the Channel-forming Toxin Aerolysin* , 1998, The Journal of Biological Chemistry.

[27]  Pingsheng Liu,et al.  Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  K. Jacobson,et al.  Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. , 1997, Biochemistry.

[29]  Michael Loran Dustin,et al.  Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic , 1997, Nature.

[30]  A. Bravo,et al.  Aminopeptidase dependent pore formation of Bacillus thuringiensis CrylAc toxin on Trichoplusia ni membranes , 1997, FEBS letters.

[31]  W. Seeger,et al.  Human endothelial cell activation and mediator release in response to the bacterial exotoxins Escherichia coli hemolysin and staphylococcal alpha-toxin. , 1997, Journal of immunology.

[32]  A. Herrmann,et al.  Interaction of Earthworm Hemolysin with Lipid Membranes Requires Sphingolipids* , 1997, The Journal of Biological Chemistry.

[33]  M Edidin,et al.  Lipid microdomains in cell surface membranes. , 1997, Current opinion in structural biology.

[34]  K. Simons,et al.  Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. , 1997, Current opinion in cell biology.

[35]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[36]  P. Cossart Host/pathogen interactions. Subversion of the mammalian cell cytoskeleton by invasive bacteria. , 1997, The Journal of clinical investigation.

[37]  B. Finlay,et al.  Exploitation of mammalian host cell functions by bacterial pathogens. , 1997, Science.

[38]  S. Raja,et al.  The Glycosylphosphatidylinositol-anchored Surface Glycoprotein Thy-1 Is a Receptor for the Channel-forming Toxin Aerolysin* , 1997, The Journal of Biological Chemistry.

[39]  B. Baird,et al.  Compartmentalized Activation of the High Affinity Immunoglobulin E Receptor within Membrane Domains* , 1997, The Journal of Biological Chemistry.

[40]  D. Hoessli,et al.  Differential regulation of Src-family protein tyrosine kinases in GPI domains of T lymphocyte plasma membranes. , 1996, Biochemical and biophysical research communications.

[41]  R. Parton,et al.  Caveolae and caveolins. , 1996, Current opinion in cell biology.

[42]  A. Servin,et al.  Pathogenicity of the diffusely adhering strain Escherichia coli C1845: F1845 adhesin-decay accelerating factor interaction, brush border microvillus injury, and actin disassembly in cultured human intestinal epithelial cells , 1996, Infection and immunity.

[43]  C. Peschle,et al.  Signal transduction and glycophosphatidylinositol-linked proteins (lyn, lck, CD4, CD45, G proteins, and CD55) selectively localize in Triton-insoluble plasma membrane domains of human leukemic cell lines and normal granulocytes. , 1996, Blood.

[44]  P. Cossart,et al.  E-Cadherin Is the Receptor for Internalin, a Surface Protein Required for Entry of L. monocytogenes into Epithelial Cells , 1996, Cell.

[45]  H. Bayley,et al.  Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins , 1996, Archives of Microbiology.

[46]  M. Hallett,et al.  Exogenous glycosyl phosphatidylinositol-anchored CD59 associates with kinases in membrane clusters on U937 cells and becomes Ca(2+)-signaling competent , 1995, The Journal of cell biology.

[47]  B. Baird,et al.  Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[48]  P. Sansonetti,et al.  Invasion of epithelial cells by Shigella flexneri induces tyrosine phosphorylation of cortactin by a pp60c‐src‐mediated signalling pathway. , 1995, The EMBO journal.

[49]  J. Roth,et al.  Virulence Mechanisms of Bacterial Pathogens , 1995 .

[50]  S. Prusiner,et al.  Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform [published erratum appears in J Cell Biol 1995 Jul;130(2):501] , 1995, The Journal of cell biology.

[51]  G. Schiavo,et al.  Bacterial protein toxins penetrate cells via a four‐step mechanism , 1994, FEBS letters.

[52]  R. Parton,et al.  Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. , 1994, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[53]  R. Ulevitch,et al.  Recognition of endotoxin by cells leading to transmembrane signaling. , 1994, Current opinion in immunology.

[54]  S. Hultgren,et al.  Neutrophil activation by nascent FimH subunits of type 1 fimbriae purified from the periplasm of Escherichia coli. , 1993, The Journal of biological chemistry.

[55]  M. Hayman,et al.  Involvement of the epidermal growth factor receptor in the invasion of cultured mammalian cells by Salmonella typhimurium , 1992, Nature.

[56]  B. Finlay,et al.  Tyrosine protein kinase inhibitors block invasin-promoted bacterial uptake by epithelial cells , 1992, Infection and immunity.

[57]  A. B. Kay,et al.  Lymphocytes , 1991 .

[58]  J. Moss,et al.  Adp-Ribosylating Toxins and G Proteins: Insights into Signal Transduction , 1990 .

[59]  S. Prusiner,et al.  Cholesterol Depletion and Modification of COOH-Terminal Targeting Sequence of the Priori Protein Inhibit Formation of the Scrapie Isoform , 2002 .

[60]  D. Brown,et al.  Functions of lipid rafts in biological membranes. , 1998, Annual review of cell and developmental biology.

[61]  D. Dean,et al.  Bacillus thuringiensis insecticidal proteins: molecular mode of action. , 1998, Progress in nucleic acid research and molecular biology.

[62]  D. Tsernoglou,et al.  Aerolysin--a paradigm for membrane insertion of beta-sheet protein toxins? , 1998, Journal of structural biology.

[63]  Harris,et al.  Cholesterol-Streptolysin O Interaction: An EM Study of Wild-Type and Mutant Streptolysin O. , 1998, Journal of structural biology.

[64]  R. Brown,et al.  Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. , 1998, Journal of cell science.

[65]  D. Hoessli,et al.  CD44 selectively associates with active Src family protein tyrosine kinases Lck and Fyn in glycosphingolipid-rich plasma membrane domains of human peripheral blood lymphocytes. , 1998, Blood.