AgInSe2 nanorods: A semiconducting material for saturable absorber

AgInSe2 nanorods (NRs) with a diameter of 15nm have been investigated for their nonlinear optical responses by using Z-scan and transient absorption techniques with femtosecond laser pulses of photon energy greater than the band gap. At excitation irradiance of 20GW∕cm2, AgInSe2 NRs reveal saturation in the nonlinear absorption and optical Kerr nonlinearity with a recovery time determined to be a few tens of picoseconds. Such large saturable absorption and Kerr nonlinearity exhibit a third-order susceptibility of 1.2×10−8esu and a figure of merit of 0.04esucms−1, making AgInSe2 NRs a promising candidate for saturable absorption devices.

[1]  Jacques A. Delaire,et al.  Optical Limitation induced by Gold Clusters. 1. Size Effect , 2000 .

[2]  Wei Ji,et al.  Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods , 2006 .

[3]  Guglielmo Lanzani,et al.  COHERENT ACOUSTIC OSCILLATIONS IN METALLIC NANOPARTICLES GENERATED WITH FEMTOSECOND OPTICAL PULSES , 1997 .

[4]  E. R. Thoen,et al.  Coherent acoustic phonons in PbTe quantum dots , 1998 .

[5]  Qihuang Gong,et al.  Large and ultrafast third-order optical non-linearity of single-wall carbon nanotubes at 820 nm , 2000 .

[6]  Minquan Tian,et al.  Semiconductor Carbon Nanotubes as Ultrafast Switching Materials for Optical Telecommunications , 2003 .

[7]  Effendy,et al.  Crystal structures and spectroscopic studies of the mononuclear complex [AgBr(PPh3)2] and binuclear [Ag2X2(PPh3)4].2CHCl3 (X=Cl or Br) , 1993 .

[8]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[9]  M. I. Demchuk,et al.  Intensity-dependent bleaching relaxation in lead salt quantum dots , 2005 .

[10]  F. Wise,et al.  COHERENT ACOUSTIC PHONONS IN A SEMICONDUCTOR QUANTUM DOT , 1997 .

[11]  S. Yamashita,et al.  Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. , 2004, Optics letters.

[12]  Lin-wang Wang,et al.  Band-structure-corrected local density approximation study of semiconductor quantum dots and wires , 2005 .

[13]  U. Banin,et al.  Quantum confinement and ultrafast dephasing dynamics in InP nanocrystals , 1997 .

[14]  B. Pradeep,et al.  Formation and properties of AgInSe2 thin films by co-evaporation , 2004 .

[15]  J Kono,et al.  Interband recombination dynamics in resonantly excited single-walled carbon nanotubes. , 2004, Physical review letters.

[16]  Xiaogang Peng,et al.  Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent , 2002 .

[17]  A. P. Alivisatos,et al.  Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. , 2002, Journal of the American Chemical Society.

[18]  G I Stegeman,et al.  Two-photon saturation in the band gap of a molecular quantum wire. , 1996, Optics letters.

[19]  Wei Ji,et al.  Broadband optical limiting with multiwalled carbon nanotubes , 1998 .

[20]  C. Boothroyd,et al.  One-pot synthesis of new-phase AgInSe2 nanorods. , 2006, Journal of the American Chemical Society.

[21]  M. Jablonski,et al.  Laser mode locking using a saturable absorber incorporating carbon nanotubes , 2004, Journal of Lightwave Technology.

[22]  S. Risbud,et al.  Synthesis, Optical Spectroscopy and Ultrafast Electron Dynamics of PbS Nanoparticles with Different Surface Capping , 2000 .

[23]  O. Jost,et al.  Third-order optical nonlinearities of carbon nanotubes in the femtosecond regime , 2004 .

[24]  G. Lanzani,et al.  Ultrafast carrier dynamics in core and core/shell CdSe quantum rods: Role of the surface and interface defects , 2005 .

[25]  H. Okamoto,et al.  Large optical nonlinearity of semiconducting single-walled carbon nanotubes under resonant excitations , 2005 .

[26]  Teruo Mozume,et al.  Nonlinearity and recovery time of 1.55 /spl mu/m intersubband absorption in InGaAs-AlAs-AlAsSb coupled quantum wells , 2001 .