HoWiES: A holistic approach to ZigBee assisted WiFi energy savings in mobile devices

We propose HoWiES, a system that saves energy consumed by WiFi interfaces in mobile devices with the assistance of ZigBee radios. The core component of HoWiES is a WiFiZigBee message delivery scheme that enables WiFi radios to convey different messages to ZigBee radios in mobile devices. Based on the WiFi-ZigBee message delivery scheme, we design three protocols that target at three WiFi energy saving opportunities in scanning, standby and wakeup respectively. We have implemented the HoWiES system with two mobile devices platforms and two AP platforms. Our real-world experimental evaluation shows that our system can convey thousands of different messages from WiFi radios to ZigBee radios with an accuracy over 98%, and our energy saving protocols, while maintaining the comparable wakeup delay to that of the standard 802.11 power save mode, save 88% and 85% of energy consumed in scanning state and standby state respectively.

[1]  Ramachandran Ramjee,et al.  NAPman: network-assisted power management for wifi devices , 2010, MobiSys '10.

[2]  Ion Stoica,et al.  Blue-Fi: enhancing Wi-Fi performance using bluetooth signals , 2009, MobiSys '09.

[3]  Kameswari Chebrolu,et al.  Esense: communication through energy sensing , 2009, MobiCom '09.

[4]  Srihari Nelakuditi,et al.  SpinLoc: spin once to know your location , 2012, HotMobile '12.

[5]  Ahmad Rahmati,et al.  Context-for-wireless: context-sensitive energy-efficient wireless data transfer , 2007, MobiSys '07.

[6]  Guoliang Xing,et al.  ZiFi: wireless LAN discovery via ZigBee interference signatures , 2010, MobiCom.

[7]  Dong Xuan,et al.  E-SmallTalker: A Distributed Mobile System for Social Networking in Physical Proximity , 2010, 2010 IEEE 30th International Conference on Distributed Computing Systems.

[8]  Paramvir Bahl,et al.  Wake on wireless: an event driven energy saving strategy for battery operated devices , 2002, MobiCom '02.

[9]  Peter A. Dinda,et al.  Characterizing and modeling user activity on smartphones: summary , 2010, SIGMETRICS '10.

[10]  Fengyuan Xu,et al.  MobiShare: Flexible privacy-preserving location sharing in mobile online social networks , 2012, 2012 Proceedings IEEE INFOCOM.

[11]  Pei Zhang,et al.  Polaris: getting accurate indoor orientations for mobile devices using ubiquitous visual patterns on ceilings , 2012, HotMobile '12.

[12]  Brian D. Noble,et al.  BreadCrumbs: forecasting mobile connectivity , 2008, MobiCom '08.

[13]  Xin Chen,et al.  Analyzing Object Detection Quality Under Probabilistic Coverage in Sensor Networks , 2005, IWQoS.

[14]  Tao Jin,et al.  WiZi-Cloud: Application-transparent dual ZigBee-WiFi radios for low power internet access , 2011, 2011 Proceedings IEEE INFOCOM.

[15]  Guoliang Xing,et al.  PBN: towards practical activity recognition using smartphone-based body sensor networks , 2011, SenSys.

[16]  Dong Xuan,et al.  E-Shadow: Lubricating Social Interaction Using Mobile Phones , 2014, IEEE Trans. Computers.

[17]  Justin Manweiler,et al.  Avoiding the Rush Hours: WiFi Energy Management via Traffic Isolation , 2012, IEEE Trans. Mob. Comput..

[18]  Tom Minka,et al.  Spot Localization using PHY Layer Information , 2012 .

[19]  Fengyuan Xu,et al.  Defending against vehicular rogue APs , 2011, 2011 Proceedings IEEE INFOCOM.

[20]  Alec Wolman,et al.  Wireless wakeups revisited: energy management for voip over wi-fi smartphones , 2007, MobiSys '07.

[21]  Lin Zhong,et al.  Self-constructive high-rate system energy modeling for battery-powered mobile systems , 2011, MobiSys '11.

[22]  Deborah Estrin,et al.  Diversity in smartphone usage , 2010, MobiSys '10.