Analysis of a linearization scheme for an interior penalty discontinuous Galerkin method for two‐phase flow in porous media with dynamic capillarity effects

ShellNWO/FOM CSER (project 14CSER016); NWO Visitors Grant 040.11.499; ResearchFoundation - Flanders FWO, Odysseus project G0G1316N; Statoil Akademia grant

[1]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework , 2008, Computing.

[2]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE , 2008, Computing.

[3]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[4]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[5]  Iuliu Sorin Pop,et al.  Two-phase porous media flows with dynamic capillary effects and hysteresis: Uniqueness of weak solutions , 2015, Comput. Math. Appl..

[6]  Luca Bergamaschi,et al.  MIXED FINITE ELEMENTS AND NEWTON-TYPE LINEARIZATIONS FOR THE SOLUTION OF RICHARDS' EQUATION , 1999 .

[7]  Buyang Li,et al.  Maximum-norm stability and maximal $$L^{p}$$Lp regularity of FEMs for parabolic equations with Lipschitz continuous coefficients , 2013, Numerische Mathematik.

[8]  William G. Gray,et al.  Thermodynamic basis of capillary pressure in porous media , 1993 .

[9]  Jan M. Nordbotten,et al.  Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation , 2011 .

[10]  F. Radu,et al.  Mixed finite elements for the Richards' equation: linearization procedure , 2004 .

[11]  Florin A. Radu,et al.  Mixed finite element discretization and Newton iteration for a reactive contaminant transport model with nonequilibrium sorption: convergence analysis and error estimates , 2011 .

[12]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[13]  I. Pop,et al.  Degenerate two-phase porous media flow model with dynamic capillarity , 2016 .

[14]  W. Yong,et al.  A Numerical Approach To Porous Medium Equations , 1996 .

[15]  M. Celia,et al.  A General Mass-Conservative Numerical Solution for the Unsaturated Flow Equation , 1990 .

[16]  B. Rivière,et al.  Analysis of hp discontinuous Galerkin methods for incompressible two-phase flow , 2009 .

[17]  Olaf Ippisch,et al.  Modeling and simulation of two-phase two-component flow with disappearing nonwetting phase , 2012, Computational Geosciences.

[18]  Eun-Jae Park,et al.  Mixed finite element methods for nonlinear second-order elliptic problems , 1995 .

[19]  Marián Slodicka,et al.  A Robust and Efficient Linearization Scheme for Doubly Nonlinear and Degenerate Parabolic Problems Arising in Flow in Porous Media , 2001, SIAM J. Sci. Comput..

[20]  Stefan Karpinski,et al.  Analysis of an interior penalty discontinuous Galerkin scheme for two phase flow in porous media with dynamic capillary effects , 2017, Numerische Mathematik.

[21]  Michael A. Celia,et al.  Dynamic Effect in the Capillary Pressure–Saturation Relationship and its Impacts on Unsaturated Flow , 2002 .

[22]  Carlota M. Cuesta,et al.  Numerical schemes for a pseudo-parabolic Burgers equation : discontinuous data and long-time behaviour , 2009 .

[23]  David A. DiCarlo,et al.  Experimental measurements of saturation overshoot on infiltration , 2004 .

[24]  R. Helmig Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems , 2011 .

[25]  F. Radu,et al.  A study on iterative methods for solving Richards’ equation , 2015, Computational Geosciences.

[26]  S. Kräutle,et al.  The semismooth Newton method for multicomponent reactive transport with minerals , 2011 .

[27]  Michael A. Celia,et al.  Dynamic Effect in the Capillary Pressure–Saturation Relationship and its Impacts on Unsaturated Flow , 2002 .

[28]  François Lehmann,et al.  Comparison of Iterative Methods for Improved Solutions of the Fluid Flow Equation in Partially Saturated Porous Media , 1998 .

[29]  H. Diersch,et al.  Modeling Unsaturated Flow in Absorbent Swelling Porous Media: Part 1. Theory , 2010 .

[30]  Shuyu Sun,et al.  A new treatment of capillarity to improve the stability of IMPES two-phase flow formulation , 2010 .

[31]  Alexandre Ern,et al.  Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..

[32]  Spencer J. Sherwin,et al.  Stability of Projection Methods for Incompressible Flows Using High Order Pressure-Velocity Pairs of Same Degree: Continuous and Discontinuous Galerkin Formulations , 2014 .

[33]  Shuyu Sun,et al.  ON ITERATIVE IMPES FORMULATION FOR TWO-PHASE FLOW WITH CAPILLARITY IN HETEROGENEOUS POROUS MEDIA , 2010 .

[34]  S. M. Hassanizadeh,et al.  A Theoretical Model of Hysteresis and Dynamic Effects in the Capillary Relation for Two-phase Flow in Porous Media , 2001 .

[35]  Jan M. Nordbotten,et al.  A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media , 2015, J. Comput. Appl. Math..

[36]  J. Nordbotten,et al.  A convergent mass conservative numerical scheme based on mixed finite elements for two-phase flow in porous media , 2015, 1512.08387.

[37]  CH' , 2018, Dictionary of Upriver Halkomelem.

[38]  Mary F. Wheeler,et al.  L∞-boundedness of the finite element galerkin operator for parabolic problems , 1982 .

[39]  BEN SCHWEIZER,et al.  Two-phase flow equations with a dynamic capillary pressure , 2012, European Journal of Applied Mathematics.

[40]  Peter Knabner,et al.  Newton—Type Methods for the Mixed Finite Element Discretization of Some Degenerate Parabolic Equations , 2006 .

[41]  Peter Bastian,et al.  Generic implementation of finite element methods in the Distributed and Unified Numerics Environment (DUNE) , 2010, Kybernetika.