Repairing Polymers Using Oscillating Magnetic Field

Repair of physically separated thermoplastic polymers containing γ-Fe2 O3 nanoparticles without sacrificing their mechanical properties is achieved by applying an oscillating magnetic field. As γ-Fe2 O3 nanoparticles oscillate at the frequency of the magnetic field, localized amorphous flow occur, and a permanent repair of physically separated polymeric films is achieved.

[1]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[2]  Carolyn M. Dry,et al.  Procedures developed for self-repair of polymer matrix composite materials , 1996 .

[3]  G. Scholes,et al.  Surface passivation of luminescent colloidal quantum dots with poly(dimethylaminoethyl methacrylate) through a ligand exchange process. , 2004, Journal of the American Chemical Society.

[4]  J. Bacri,et al.  Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. , 2007, Journal of the American Chemical Society.

[5]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[6]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[7]  N. Sottos,et al.  Autonomic healing of polymer composites , 2001, Nature.

[8]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[9]  N. Buske,et al.  Magnetic fluids — their preparation, stabilization and applications in colloid science , 1984 .

[10]  A. Waas,et al.  Ultrastrong and Stiff Layered Polymer Nanocomposites , 2007, Science.

[11]  M. Urban,et al.  Stable Nonspherical Fluorine-Containing Colloidal Dispersions: Synthesis and Film Formation , 2005 .

[12]  S. A. Gómez-Lopera,et al.  Synthesis and Characterization of Spherical Magnetite/Biodegradable Polymer Composite Particles. , 2001, Journal of colloid and interface science.

[13]  M. Urban,et al.  Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks , 2009, Science.

[14]  L. Drzal,et al.  Intact Pattern Transfer of Conductive Exfoliated Graphite Nanoplatelet Composite Films to Polyelectrolyte Multilayer Platforms , 2008 .

[15]  D. Pienkowski,et al.  Augmentation of acrylic bone cement with multiwall carbon nanotubes. , 2006, Journal of biomedical materials research. Part A.

[16]  Richard H. Harris,et al.  Nanoparticle networks reduce the flammability of polymer nanocomposites , 2005, Nature materials.

[17]  Jianfeng Chen,et al.  Study on in situ preparation of nano calcium carbonate/PMMA composite particles , 2006 .

[18]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[19]  D C Rees,et al.  A structural basis for recognition of A.T and T.A base pairs in the minor groove of B-DNA. , 1998, Science.

[20]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[21]  Paul Calvert,et al.  Nanotube composites: A recipe for strength , 1999, Nature.

[22]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[23]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.