Integrability propagation for a Boltzmann system describing polyatomic gas mixtures

This paper explores the $L^{p}$ Lebesgue's integrability propagation, $p\in(1,\infty]$, of a system of space homogeneous Boltzmann equations modelling a multi-component mixture of polyatomic gases based on the continuous internal energy. For typical collision kernels proposed in the literature, $L^p$ moment-entropy-based estimates for the collision operator gain part and a lower bound for the loss part are performed leading to a vector valued inequality for the collision operator and, consequently, to a differential inequality for the vector valued solutions of the system. This allows to prove the propagation property of the polynomially weighted $L^p$ norms associated to the vector valued solution of the system of Boltzmann equations. The case $p=\infty$ is found as a limit of the case $p<\infty$.

[1]  Niclas Bernhoff Compactness property of the linearized Boltzmann collision operator for a mixture of monatomic and polyatomic species , 2023, 2303.05845.

[2]  M. Torrilhon,et al.  Boltzmann collision operator for polyatomic gases in agreement with experimental data and DSMC method , 2022, Continuum Mechanics and Thermodynamics.

[3]  R. Alonso,et al.  The Boltzmann equation for hard potentials with integrable angular transition: Coerciveness, exponential tails rates, and Lebesgue integrability , 2022, 2211.09188.

[4]  Renjun Duan,et al.  Global bounded solutions to the Boltzmann equation for a polyatomic gas , 2022, International Journal of Mathematics.

[5]  P. Thieullen,et al.  Fredholm property of the linearized Boltzmann operator for a polyatomic single gas model , 2022, Kinetic and Related Models.

[6]  M. Pavić-Čolić,et al.  Kinetic description of polyatomic gases with temperature-dependent specific heats , 2022, Physical Review Fluids.

[7]  F. Salvarani,et al.  Compactness property of the linearized Boltzmann operator for a polyatomic gas undergoing resonant collisions , 2022, Journal of Mathematical Analysis and Applications.

[8]  R. Alonso,et al.  Statistical moments and integrability properties of monatomic gas mixtures with long range interactions , 2022, 2204.09160.

[9]  T. Ruggeri,et al.  A complete classification of sub-shocks in the shock structure of a binary mixture of Eulerian gases with different degrees of freedom , 2022, Physics of Fluids.

[10]  Niclas Bernhoff Linearized Boltzmann collision operator: II. Polyatomic molecules modeled by a continuous internal energy variable , 2022, Kinetic and Related Models.

[11]  Srboljub Simi'c,et al.  Maximum entropy principle approach to a non-isothermal Maxwell-Stefan diffusion model , 2021, Appl. Math. Lett..

[12]  M. Torrilhon,et al.  Consistent, explicit, and accessible Boltzmann collision operator for polyatomic gases. , 2021, Physical review. E.

[13]  M. Bisi,et al.  A General Framework for the Kinetic Modelling of Polyatomic Gases , 2021, Communications in Mathematical Physics.

[14]  Srboljub Simic,et al.  Shock Structure and Relaxation in the Multi-Component Mixture of Euler Fluids , 2021, Symmetry.

[15]  F. Salvarani,et al.  On the Maxwell-Stefan diffusion limit for a reactive mixture of polyatomic gases in non-isothermal setting , 2019, Kinetic & Related Models.

[16]  M. Pavić-Čolić Multi-velocity and multi-temperature model of the mixture of polyatomic gases issuing from kinetic theory , 2019, Physics Letters A.

[17]  C. Baranger,et al.  On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases , 2018, 31ST INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS: RGD31.

[18]  R. Alonso,et al.  Exponentially-tailed regularity and time asymptotic for the homogeneous Boltzmann equation , 2017, 1711.06596.

[19]  Takashi Arima,et al.  Rational extended thermodynamics of a rarefied polyatomic gas with molecular relaxation processes. , 2017, Physical review. E.

[20]  Tommaso Ruggeri,et al.  Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamics , 2017 .

[21]  Giampiero Spiga,et al.  On kinetic models for polyatomic gases and their hydrodynamic limits , 2017 .

[22]  Irene M. Gamba,et al.  Convergence and Error Estimates for the Lagrangian-Based Conservative Spectral Method for Boltzmann Equations , 2016, SIAM J. Numer. Anal..

[23]  Esther S. Daus,et al.  The Boltzmann Equation for a Multi-species Mixture Close to Global Equilibrium , 2016, 1601.00326.

[24]  G. Spiga,et al.  Multi-temperature Hydrodynamic Limit from Kinetic Theory in a Mixture of Rarefied Gases , 2012 .

[25]  Irene M. Gamba,et al.  Convolution Inequalities for the Boltzmann Collision Operator , 2009, 0902.0507.

[26]  Ricardo J. Alonso,et al.  Estimates for the Boltzmann collision operator via radial symmetry and Fourier transform , 2008, 0812.3168.

[27]  Francesco Salvarani,et al.  A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions , 2005 .

[28]  Cl'ement Mouhot,et al.  Regularity Theory for the Spatially Homogeneous Boltzmann Equation with Cut-Off , 2004, math/0607539.

[29]  C. Villani,et al.  On the Boltzmann Equation for Diffusively Excited Granular Media , 2003, math/0302348.

[30]  G. Spiga,et al.  Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas , 1999 .

[31]  Laurent Desvillettes,et al.  A proof of the smoothing properties of the positive part of Boltzmann's kernel , 1998 .

[32]  Tommy Gustafsson,et al.  Global Lp-properties for the spatially homogeneous Boltzmann equation , 1988 .

[33]  L. Arkeryd L∞ estimates for the space-homogeneous Boltzmann equation , 1983 .

[34]  Claus Borgnakke,et al.  Statistical collision model for Monte Carlo simulation of polyatomic gas mixture , 1975 .

[35]  P. Thieullen,et al.  Compactness property of the linearized Boltzmann operator for a diatomic single gas model , 2022, Networks and Heterogeneous Media.

[36]  T. Ruggeri,et al.  Classical and Relativistic Rational Extended Thermodynamics of Gases , 2021 .

[37]  Applied,et al.  Polytropic gas modelling at kinetic and macroscopic levels , 2021, Kinetic & Related Models.

[38]  R. Alonso Brief Discussion of the $$L^{r}$$-Theory for the Boltzmann Equation: Cutoff and Non-cutoff , 2021 .

[39]  Multicomponent Flow Modeling Modeling And Simulation In Science Engineering And Technology Ser , 2017 .

[40]  Irene M. Gamba,et al.  Gain of integrability for the Boltzmann collisional operator , 2010 .

[41]  E. Kustova,et al.  Non-Equilibrium Reacting Gas Flows , 2009 .

[42]  L. Desvillettes Sur un modèle de type Borgnakke-Larsen conduisant à des lois d'énergie non linéaires en température pour les gaz parfaits polyatomiques , 1997 .

[43]  P. Le Tallec,et al.  Microreversible collisions for polyatomic gases and Boltzmann's theorem , 1994 .

[44]  P. Lions,et al.  Compactness in Boltzmann’s equation via Fourier integral operators and applications. III , 1994 .

[45]  B. Wennberg Regularity in the Boltzmann equation and the Radon transform , 1994 .