On bandwidth choice in nonparametric regression with both short- and long-range dependent errors

We analyse methods based on the block bootstrap and leave-out cross-validation, for choosing the bandwidth in nonparametric regression when errors have an almost arbitrarily long range of dependence. A novel analytical device for modelling the dependence structure of errors is introduced. This allows a concise theoretical description of the way in which the range of dependence affects optimal bandwidth choice. It is shown that, provided block length or leave-out number, respectively, are chosen appropriately, both techniques produce first-order optimal bandwidths. Nevertheless, the block bootstrap has far better empirical properties, particularly under long-range dependence.

[1]  H. Müller,et al.  Kernel estimation of regression functions , 1979 .

[2]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[3]  P. Hall,et al.  Martingale Limit Theory and its Application. , 1984 .

[4]  Peter Hall Resampling a coverage pattern , 1985 .

[5]  E. Carlstein The Use of Subseries Values for Estimating the Variance of a General Statistic from a Stationary Sequence , 1986 .

[6]  J. Hart,et al.  Kernel Regression Estimation Using Repeated Measurements Data , 1986 .

[7]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[8]  M. Hutchinson,et al.  ON SPLINE SMOOTHING WITH AUTOCORRELATED ERRORS , 1989 .

[9]  Wolfgang Härdle,et al.  Nonparametric Curve Estimation from Time Series , 1989 .

[10]  Naomi Altman,et al.  Kernel Smoothing of Data with Correlated Errors , 1990 .

[11]  W. Härdle Applied Nonparametric Regression , 1991 .

[12]  P. Vieu,et al.  Data-Driven Bandwidth Choice for Density Estimation Based on Dependent Data , 1990 .

[13]  J. Faraway,et al.  Bootstrap choice of bandwidth for density estimation , 1990 .

[14]  J. Marron,et al.  Comparison of Two Bandwidth Selectors with Dependent Errors , 1991 .

[15]  J. Hart Kernel regression estimation with time series errors , 1991 .

[16]  T. Gasser,et al.  Choice of bandwidth for kernel regression when residuals are correlated , 1992 .

[17]  W. Härdle,et al.  Kernel regression smoothing of time series , 1992 .

[18]  R. Kohn,et al.  Nonparametric spline regression with autoregressive moving average errors , 1992 .

[19]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[20]  Jeffrey D. Hart,et al.  Automated Kernel Smoothing of Dependent Data by Using Time Series Cross‐Validation , 1994 .

[21]  A. Wood,et al.  Simulation of Stationary Gaussian Processes in [0, 1] d , 1994 .