A Novel Teno Scheme with Improved Order of Accuracy Based on Perturbed Polynomial Reconstruction

[1]  Byeongseon Jeong,et al.  Development of a WENO scheme based on radial basis function with an improved convergence order , 2022, J. Comput. Phys..

[2]  W. Shyy,et al.  A fifth-order low-dissipation discontinuity-resolving TENO scheme for compressible flow simulation , 2022, J. Comput. Phys..

[3]  De-jun Sun,et al.  An alternative formulation of targeted ENO scheme for hyperbolic conservation laws , 2022, Computers & Fluids.

[4]  F. Xiao,et al.  A novel high-order low-dissipation TENO-THINC scheme for hyperbolic conservation laws , 2021, Journal of Computational Physics.

[5]  Lin Fu,et al.  Very-high-order TENO schemes with adaptive accuracy order and adaptive dissipation control , 2021, Computer Methods in Applied Mechanics and Engineering.

[6]  Engkos A. Kosasih,et al.  Fifth-Order Hermite Targeted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws , 2021, Journal of Scientific Computing.

[7]  Conghai Wu,et al.  Very high order WENO schemes using efficient smoothness indicators , 2021, J. Comput. Phys..

[8]  Ke Zhang,et al.  An efficient targeted ENO scheme with local adaptive dissipation for compressible flow simulation , 2020, J. Comput. Phys..

[9]  Wenping Song,et al.  An improved WENO method based on Gauss-kriging reconstruction with an optimized hyper-parameter , 2020, J. Comput. Phys..

[10]  Ling Wu,et al.  A smoothness indicator constant for sine functions , 2020, J. Comput. Phys..

[11]  Lin Fu,et al.  A very-high-order TENO scheme for all-speed gas dynamics and turbulence , 2019, Comput. Phys. Commun..

[12]  Nikolaus A. Adams,et al.  Numerical symmetry-preserving techniques for low-dissipation shock-capturing schemes , 2019, Computers & Fluids.

[13]  Nikolaus A. Adams,et al.  Improved Five- and Six-Point Targeted Essentially Nonoscillatory Schemes with Adaptive Dissipation , 2019, AIAA Journal.

[14]  Lin Fu,et al.  A low-dissipation finite-volume method based on a new TENO shock-capturing scheme , 2019, Comput. Phys. Commun..

[15]  Nikolaus A. Adams,et al.  A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws , 2018, J. Comput. Phys..

[16]  Jun Zhu,et al.  A new type of multi-resolution WENO schemes with increasingly higher order of accuracy , 2018, J. Comput. Phys..

[17]  Nikolaus A. Adams,et al.  Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws , 2017, J. Comput. Phys..

[18]  A. Harten High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .

[19]  Jingyang Guo,et al.  A RBF-WENO finite volume method for hyperbolic conservation laws with the monotone polynomial interpolation method , 2017 .

[20]  Jingyang Guo,et al.  Radial Basis Function ENO and WENO Finite Difference Methods Based on the Optimization of Shape Parameters , 2016, Journal of Scientific Computing.

[21]  Chi-Wang Shu,et al.  High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developments , 2016, J. Comput. Phys..

[22]  Bruno Costa,et al.  An improved WENO-Z scheme , 2016, J. Comput. Phys..

[23]  Nikolaus A. Adams,et al.  A family of high-order targeted ENO schemes for compressible-fluid simulations , 2016, J. Comput. Phys..

[24]  Mengping Zhang,et al.  On the Order of Accuracy and Numerical Performance of Two Classes of Finite Volume WENO Schemes , 2011 .

[25]  Nikolaus A. Adams,et al.  An adaptive central-upwind weighted essentially non-oscillatory scheme , 2010, J. Comput. Phys..

[26]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[27]  G. A. Gerolymos,et al.  Very-high-order weno schemes , 2009, J. Comput. Phys..

[28]  Chi-Wang Shu,et al.  Development of nonlinear weighted compact schemes with increasingly higher order accuracy , 2008, J. Comput. Phys..

[29]  Wai-Sun Don,et al.  An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws , 2008, J. Comput. Phys..

[30]  Chi-Wang Shu,et al.  A New Smoothness Indicator for the WENO Schemes and Its Effect on the Convergence to Steady State Solutions , 2007, J. Sci. Comput..

[31]  J. M. Powers,et al.  Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points , 2005 .

[32]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[33]  Michael A. Leschziner,et al.  Average-State Jacobians and Implicit Methods for Compressible Viscous and Turbulent Flows , 1997 .

[34]  S. Osher,et al.  Regular ArticleUniformly High Order Accurate Essentially Non-oscillatory Schemes, III , 1997 .

[35]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[36]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[37]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .