The Postsaccadic Unreliability of Gain Fields Renders It Unlikely that the Motor System Can Use Them to Calculate Target Position in Space

Gain fields, the eye-position modulation of visual responses, are thought to provide a mechanism by which the motor system can accurately calculate target position in space despite a constantly moving eye. Current gain-field models assume that the modulation of visual responses by eye position is accurate at all times, even around the time of a saccade. Here, we show that for at least 150 ms after a saccade, gain fields in the lateral intraparietal area (LIP) are unreliable. The majority of LIP cells with steady-state gain fields reflect the presaccadic eye position. The remainder of the cells have responses that cannot be predicted by their steady-state gain fields. Nonetheless, a monkey's oculomotor performance is accurate during this time. These results suggest that current models built upon a simple gain-field algorithm cannot be used to calculate the position of a target in space that flashes briefly after a saccade.

[1]  Richard A. Andersen,et al.  Separate body- and world-referenced representations of visual space in parietal cortex , 1998, Nature.

[2]  A P Batista,et al.  Reach plans in eye-centered coordinates. , 1999, Science.

[3]  T. Sejnowski,et al.  A neural model of the cortical representation of egocentric distance. , 1994, Cerebral cortex.

[4]  K. Hoffmann,et al.  Neural Dynamics of Saccadic Suppression , 2009, Journal of Neuroscience.

[5]  T J Sejnowski,et al.  A new view of hemineglect based on the response properties of parietal neurones. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[6]  C. Bruce,et al.  Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. , 1990, Journal of neurophysiology.

[7]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[8]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[9]  D. Sparks,et al.  Corollary discharge provides accurate eye position information to the oculomotor system. , 1983, Science.

[10]  J. Duhamel,et al.  Saccadic Target Selection Deficits after Lateral Intraparietal Area Inactivation in Monkeys , 2002, The Journal of Neuroscience.

[11]  C. Galletti,et al.  Reaching activity in parietal area V6A of macaque: eye influence on arm activity or retinocentric coding of reaching movements? , 2008, The European journal of neuroscience.

[12]  Frank Bremmer,et al.  Dynamics of Eye-Position Signals in the Dorsal Visual System , 2012, Current Biology.

[13]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  L. Fogassi,et al.  Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  L. Snyder Coordinate transformations for eye and arm movements in the brain , 2000, Current Opinion in Neurobiology.

[16]  D. Zee,et al.  Extraocular muscle proprioception functions in the control of ocular alignment and eye movement conjugacy. , 1994, Journal of neurophysiology.

[17]  Vincent P Ferrera,et al.  Computing vector differences using a gain field‐like mechanism in monkey frontal eye field , 2007, The Journal of physiology.

[18]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[19]  Mingsha Zhang,et al.  The proprioceptive representation of eye position in monkey primary somatosensory cortex , 2007, Nature Neuroscience.

[20]  Kathleen E Cullen,et al.  Discharge dynamics of oculomotor neural integrator neurons during conjugate and disjunctive saccades and fixation. , 2003, Journal of neurophysiology.

[21]  E. J. Tehovnik,et al.  Eye Movements Modulate Visual Receptive Fields of V4 Neurons , 2001, Neuron.

[22]  Alexandre Pouget,et al.  Computational approaches to sensorimotor transformations , 2000, Nature Neuroscience.

[23]  R A Andersen,et al.  Multimodal integration for the representation of space in the posterior parietal cortex. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[24]  Lance M. Optican,et al.  Unix-based multiple-process system, for real-time data acquisition and control , 1982 .

[25]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  L. Abbott,et al.  A model of multiplicative neural responses in parietal cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R. Andersen,et al.  Head position signals used by parietal neurons to encode locations of visual stimuli , 1995, Nature.

[28]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. , 1991, Journal of neurophysiology.

[29]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. , 1983, Journal of neurophysiology.

[30]  P. E. Hallett,et al.  Saccadic eye movements towards stimuli triggered by prior saccades , 1976, Vision Research.

[31]  Christopher J. Peck,et al.  The time course of the tonic oculomotor proprioceptive signal in area 3a of somatosensory cortex. , 2011, Journal of neurophysiology.

[32]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[33]  M. Goldberg,et al.  The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. , 2003, Journal of neurophysiology.

[34]  Emilio Bizzi,et al.  Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys , 1968, Experimental Brain Research.

[35]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[36]  Aldo Genovesio,et al.  Integration of retinal disparity and fixation-distance related signals toward an egocentric coding of distance in the posterior parietal cortex of primates. , 2004, Journal of neurophysiology.

[37]  C. Bruce,et al.  Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. , 1985, Journal of neurophysiology.

[38]  Steve W. C. Chang,et al.  Using a Compound Gain Field to Compute a Reach Plan , 2009, Neuron.

[39]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. , 1983, Journal of neurophysiology.

[40]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[41]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[42]  M. Goldberg,et al.  Rhesus monkeys mislocalize saccade targets flashed for 100ms around the time of a saccade , 2007, Vision Research.