Modeling and traversal of pliable materials for tracked robot navigation

In order to fully exploit robot motion capabilities in complex environments, robots need to reason about obstacles in a non-binary fashion. In this paper, we focus on the modeling and characterization of pliable materials such as tall vegetation. These materials are of interest because they are pervasive in the real world, requiring the robotic vehicle to determine when to traverse or avoid them. This paper develops and experimentally verifies a template model for vegetation stems. In addition, it presents a methodology to generate predictions of the associated energetic cost incurred by a tracked mobile robot when traversing a vegetation patch of variable density.