Kernel based quadrature on spheres and other homogeneous spaces

Quadrature formulas for spheres, the rotation group, and other compact, homogeneous manifolds are important in a number of applications and have been the subject of recent research. The main purpose of this paper is to study coordinate independent quadrature (or cubature) formulas associated with certain classes of positive definite and conditionally positive definite kernels that are invariant under the group action of the homogeneous manifold. In particular, we show that these formulas are accurate—optimally so in many cases—and stable under an increasing number of nodes and in the presence of noise, provided the set $$X$$X of quadrature nodes is quasi-uniform. The stability results are new in all cases. In addition, we may use these quadrature formulas to obtain similar formulas for manifolds diffeomorphic to $$\mathbb S ^n$$Sn, oblate spheroids for instance. The weights are obtained by solving a single linear system. For $$\mathbb S ^2$$S2, and the restricted thin plate spline kernel $$r^2\log r$$r2logr, these weights can be computed for two-thirds of a million nodes, using a preconditioned iterative technique introduced by us.

[1]  Simon Hubbert,et al.  Radial basis functions for the sphere , 2015 .

[2]  Joseph D. Ward,et al.  Localized Bases for Kernel Spaces on the Unit Sphere , 2012, SIAM J. Numer. Anal..

[3]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[4]  F. Giraldo Lagrange-Galerkin Methods on Spherical Geodesic Grids , 1997 .

[5]  Hrushikesh Narhar Mhaskar,et al.  L BERNSTEIN ESTIMATES AND APPROXIMATION BY SPHERICAL BASIS FUNCTIONS , 2010 .

[6]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[7]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[8]  Joseph D. Ward,et al.  Polyharmonic and Related Kernels on Manifolds: Interpolation and Approximation , 2010, Foundations of Computational Mathematics.

[9]  Emmanuel Hebey,et al.  Nonlinear analysis on manifolds , 1999 .

[10]  GinéM Evarist,et al.  The addition formula for the eigenfunctions of the Laplacian , 1975 .

[11]  Hrushikesh Narhar Mhaskar,et al.  Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature , 2001, Math. Comput..

[12]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[13]  E. Saff,et al.  Discretizing Manifolds via Minimum Energy Points , 2004 .

[14]  Christian Hüttig,et al.  The spiral grid: A new approach to discretize the sphere and its application to mantle convection , 2008 .

[15]  Erik Lehto,et al.  A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere , 2012, J. Comput. Phys..

[16]  Stefan Kunis,et al.  On the computation of nonnegative quadrature weights on the sphere , 2009 .

[17]  G. Wright,et al.  A hybrid radial basis function–pseudospectral method for thermal convection in a 3‐D spherical shell , 2010 .

[18]  Roland Klees,et al.  The spherical Slepian basis as a means to obtain spectral consistency between mean sea level and the geoid , 2012, Journal of Geodesy.

[19]  Holger Wendland,et al.  Direct and Inverse Sobolev Error Estimates for Scattered Data Interpolation via Spherical Basis Functions , 2007, Found. Comput. Math..

[20]  I. G. MacDonald,et al.  Lectures on Lie groups and Lie algebras , 1995 .

[21]  Feng Dai,et al.  Approximation of smooth functions on compact two-point homogeneous spaces , 2005, math/0510007.

[22]  A. C. Faul,et al.  Proof of convergence of an iterative technique for thin plate spline interpolation in two dimensions , 1999, Adv. Comput. Math..

[23]  R. Swinbank,et al.  Fibonacci grids: A novel approach to global modelling , 2006 .

[24]  Natasha Flyer,et al.  A radial basis function method for the shallow water equations on a sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  T. Hangelbroek,et al.  Kernel Approximation on Manifolds II: The L∞ Norm of the L2 Projector , 2010, SIAM J. Math. Anal..

[26]  D. Potts,et al.  Sampling Sets and Quadrature Formulae on the Rotation Group , 2009 .

[27]  Thierry Aubin,et al.  Nonlinear analysis on manifolds, Monge-Ampère equations , 1982 .

[28]  K. Atkinson,et al.  Spherical Harmonics and Approximations on the Unit Sphere: An Introduction , 2012 .

[29]  S. Helgason Groups and geometric analysis , 1984 .

[30]  Pencho Petrushev,et al.  Localized Tight Frames on Spheres , 2006, SIAM J. Math. Anal..

[31]  Hrushikesh Narhar Mhaskar,et al.  A Quadrature Formula for Diffusion Polynomials Corresponding to a Generalized Heat Kernel , 2010 .

[32]  Dominik Schmid,et al.  Surface Spline Approximation on SO(3) , 2009, 0911.1836.

[33]  Stefan Kunis,et al.  Fast Summation of Radial Functions on the Sphere , 2006, Computing.

[34]  Emmanuel Hebey,et al.  Sobolev Spaces on Riemannian Manifolds , 1996 .

[35]  J. Hannay,et al.  Fibonacci numerical integration on a sphere , 2004 .

[36]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[37]  Willi Freeden,et al.  Handbook of geomathematics , 2010 .

[38]  Michael Buchhold,et al.  The Operational Global Icosahedral-Hexagonal Gridpoint Model GME: Description and High-Resolution Tests , 2002 .

[39]  Robert Michael Kirby,et al.  A Study of Different Modeling Choices For Simulating Platelets Within the Immersed Boundary Method , 2012, Applied numerical mathematics : transactions of IMACS.

[40]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[41]  Kendall Atkinson,et al.  Numerical integration on the sphere , 1982, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[42]  Alvise Sommariva,et al.  INTEGRATION BY RBF OVER THE SPHERE , 2005 .

[43]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[44]  Isaac Z. Pesenson,et al.  Cubature formulas and discrete fourier transform on compact manifolds , 2011, ArXiv.

[45]  Todd D. Ringler,et al.  Modeling the Atmospheric General Circulation Using a Spherical Geodesic Grid: A New Class of Dynamical Cores , 2000 .

[46]  Álvaro González Measurement of Areas on a Sphere Using Fibonacci and Latitude–Longitude Lattices , 2009, 0912.4540.

[47]  Edward B. Saff,et al.  Low Complexity Methods For Discretizing Manifolds Via Riesz Energy Minimization , 2013, Found. Comput. Math..

[48]  Manuel Gräf,et al.  A unified approach to scattered data approximation on $\mathbb{S}^{\bf 3}$ and SO(3) , 2012, Adv. Comput. Math..

[49]  Joseph D. Ward,et al.  Kernel Approximation on Manifolds I: Bounding the Lebesgue Constant , 2009, SIAM J. Math. Anal..

[50]  F. W. Warner Foundations of Differentiable Manifolds and Lie Groups , 1971 .

[51]  Sigurdur Helgason,et al.  Invariant differential operators , 2000 .

[52]  G. R. Stuhne,et al.  New icosahedral grid-point discretization of the shallow water equation on the sphere , 1999 .