Roadmap for Rare-earth Quantum Computing

1. Division of Atomic physics, Lund University, P.O. Box 118, 221 00, Lund, Sweden 2. Karlsruhe Institute of Technology, Physikalisches Institut, Institute for Quantum Materials and Technologies, Wolfgang-Gaede Str. 1, 76131 Karlsruhe, Germany 3. 3 Institute of Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany 4. Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, DK 8000 Aarhus C, Denmark 5. ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Technology, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain 6. ICREA-Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain 7. Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France 8. Thales Research and Technology, 1 Avenue Augustin Fresnel, 91767 Palaiseau, France 9. Attocube Systems AG, Eglfinger Weg 2, 85540 Haar, Germany

[1]  W. Alt,et al.  Tunable fiber Fabry-Perot cavities with high passive stability. , 2020, Optics express.

[2]  P. Marcus,et al.  Harnessing Atomic Layer Deposition and Diffusion to Spatially Localize Rare-Earth Ion Emitters , 2020 .

[3]  A. Blais,et al.  Microwave Quantum Link between Superconducting Circuits Housed in Spatially Separated Cryogenic Systems. , 2020, Physical review letters.

[4]  I. Vickridge,et al.  Chemically vapor deposited Eu3+:Y2O3 thin films as a material platform for quantum technologies , 2020, Journal of Applied Physics.

[5]  K. Mølmer,et al.  Ancilla-mediated qubit readout and heralded entanglement between rare-earth dopant ions in crystals , 2020, 2007.02866.

[6]  A. Reiserer,et al.  Coherent and Purcell-Enhanced Emission from Erbium Dopants in a Cryogenic High- Q Resonator , 2020 .

[7]  Klaus Mølmer,et al.  Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits , 2020, Physical Review X.

[8]  P. Goldner,et al.  Defect Engineering for Quantum Grade Rare-Earth Nanocrystals. , 2020, ACS nano.

[9]  V. Savona,et al.  Monolithic Silicon-Based Nanobeam Cavities for Integrated Nonlinear and Quantum Photonics , 2020 .

[10]  A. Dibos,et al.  Optical quantum nondemolition measurement of a single rare earth ion qubit , 2020, Nature Communications.

[11]  D. Hunger,et al.  Dynamic control of Purcell enhanced emission of erbium ions in nanoparticles , 2020, Nature Communications.

[12]  B. Lekitsch,et al.  Shuttling-based trapped-ion quantum information processing , 2019, AVS Quantum Science.

[13]  Dirk Englund,et al.  Large-scale integration of artificial atoms in hybrid photonic circuits , 2020, Nature.

[14]  Pavel Sekatski,et al.  A gated quantum dot strongly coupled to an optical microcavity , 2019, Nature.

[15]  P. Goldner,et al.  Emerging rare-earth doped material platforms for quantum nanophotonics , 2019, Nanophotonics.

[16]  R. Cava,et al.  Narrow optical linewidths in erbium implanted in TiO2. , 2019, Nano letters.

[17]  Jonathan M. Kindem,et al.  Control and single-shot readout of an ion embedded in a nanophotonic cavity , 2019, Nature.

[18]  M. Saffman,et al.  Microwave to optical conversion with atoms on a superconducting chip , 2019, New Journal of Physics.

[19]  Xi Chen,et al.  Inverse engineering of shortcut pulses for high fidelity initialization on qubits closely spaced in frequency. , 2019, Optics express.

[20]  S. Dawkins,et al.  Deterministic Single-Ion Implantation of Rare-Earth Ions for Nanometer-Resolution Color-Center Generation. , 2019, Physical review letters.

[21]  R. Blatt,et al.  Efficient ion-photon qubit SWAP gate in realistic ion cavity-QED systems without strong coupling. , 2019, Optics express.

[22]  U. Schmid,et al.  Silicon microcavity arrays with open access and a finesse of half a million , 2019, Light, science & applications.

[23]  J. Longdell,et al.  Microwave to optical photon conversion via fully concentrated rare-earth-ion crystals , 2018, Physical Review A.

[24]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[25]  J. Thompson,et al.  Atomic Source of Single Photons in the Telecom Band. , 2018, Physical review letters.

[26]  Andrei Faraon,et al.  Optically Addressing Single Rare-Earth Ions in a Nanophotonic Cavity. , 2018, Physical review letters.

[27]  K. Mølmer,et al.  Deterministic quantum network for distributed entanglement and quantum computation , 2018, Physical Review A.

[28]  D. Hunger,et al.  Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:Y2O3 , 2018, New Journal of Physics.

[29]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[30]  Philippe Goldner,et al.  Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins , 2017, Nature Materials.

[31]  L. DiCarlo,et al.  Chip-to-chip entanglement of transmon qubits using engineered measurement fields , 2017, 1712.06141.

[32]  C. Simon,et al.  Quantum repeaters with individual rare-earth ions at telecommunication wavelengths , 2017, Quantum.

[33]  P. Goldner,et al.  All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles , 2017, Nature Communications.

[34]  Franco Nori,et al.  Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification. , 2017, Physical review letters.

[35]  A. Clerk,et al.  Enhancing Cavity Quantum Electrodynamics via Antisqueezing: Synthetic Ultrastrong Coupling. , 2017, Physical review letters.

[36]  M. Saffman,et al.  High-fidelity Rydberg quantum gate via a two-atom dark state , 2017, 1708.00755.

[37]  Dirk Englund,et al.  Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities. , 2017, Physical review letters.

[38]  I. Mirgorodskiy,et al.  Free-Space Quantum Electrodynamics with a single Rydberg superatom , 2017, 1705.04128.

[39]  Susumu Noda,et al.  Photonic crystal nanocavity with a Q factor exceeding eleven million. , 2017, Optics express.

[40]  H. de Riedmatten,et al.  Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[41]  Christoph Becher,et al.  Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond , 2016, 1612.05509.

[42]  P. Zoller,et al.  Quantum State Transfer via Noisy Photonic and Phononic Waveguides. , 2016, Physical review letters.

[43]  Jian-Wei Pan,et al.  Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble. , 2016, Physical review letters.

[44]  Peter Zoller,et al.  Chiral quantum optics , 2016, Nature.

[45]  Christiane P. Koch,et al.  Charting the circuit QED design landscape using optimal control theory , 2016, 1606.08825.

[46]  Bastian Hacker,et al.  A photon–photon quantum gate based on a single atom in an optical resonator , 2016, Nature.

[47]  K. Mølmer,et al.  Single-atom single-photon coupling facilitated by atomic-ensemble dark-state mechanisms , 2016, 1605.05132.

[48]  Andrei Faraon,et al.  Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles , 2016, Nature Communications.

[49]  N. Gisin,et al.  Quantum memory for photons , 2015 .

[50]  Silke Christiansen,et al.  Sensing Nanoparticles with a Cantilever-Based Scannable Optical Cavity of Low Finesse and Sub-lambda(3) Volume , 2015 .

[51]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[52]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[53]  A. Trichet,et al.  Topographic control of open-access microcavities at the nanometer scale. , 2015, Optics express.

[54]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[55]  Hsi-Sheng Goan,et al.  Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond , 2015, 1504.06385.

[56]  A. Walther,et al.  High-fidelity readout scheme for rare-earth solid-state quantum computing , 2015, 1503.08447.

[57]  S. Madden,et al.  Observation of Photon Echoes From Evanescently Coupled Rare-Earth Ions in a Planar Waveguide. , 2015, Physical review letters.

[58]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[59]  K. Lengyel,et al.  Homogeneous linewidth measurements of Yb3+ ions in congruent and stoichiometric lithium niobate crystals , 2014 .

[60]  C. K. Andersen,et al.  Multifrequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings , 2014, 1410.6644.

[61]  S. Kröll,et al.  Impact of the ion–ion energy transfer on quantum computing schemes in rare-earth doped solids , 2014 .

[62]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.

[63]  C Figgatt,et al.  Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. , 2014, Physical review letters.

[64]  J. Longdell,et al.  Precision measurement of electronic ion-ion interactions between neighboring Eu3+ optical centers. , 2013, Physical review letters.

[65]  K. Mølmer,et al.  Robust Rydberg interaction gates with adiabatic passage , 2013, 1311.5147.

[66]  V. Sandoghdar,et al.  Spectroscopic detection and state preparation of a single praseodymium ion in a crystal , 2013, Nature Communications.

[67]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[68]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[69]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[70]  Alexey V. Gorshkov,et al.  Quantum nonlinear optics with single photons enabled by strongly interacting atoms , 2012, Nature.

[71]  Dieter Suter,et al.  Robust dynamical decoupling for quantum computing and quantum memory. , 2011, Physical review letters.

[72]  Tilo Steinmetz,et al.  A fiber Fabry–Perot cavity with high finesse , 2010, 1005.0067.

[73]  M. Markham,et al.  Quantum register based on coupled electron spins in a room-temperature solid. , 2010, 1004.5090.

[74]  Yan Ying,et al.  Extracting high fidelity quantum computer hardware from random systems , 2009, 1001.1664.

[75]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[76]  D. L. McAuslan,et al.  Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator , 2009, 0908.1994.

[77]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[78]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[79]  Christoph Simon,et al.  A solid-state light–matter interface at the single-photon level , 2008, Nature.

[80]  N. Gisin,et al.  State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing , 2008, 0808.3537.

[81]  L. H. Pedersen,et al.  Few qubit atom-light interfaces with collective encoding , 2008, 0807.3610.

[82]  Jacob M. Taylor,et al.  Distributed Quantum Computation Based-on Small Quantum Registers , 2007, 0709.4539.

[83]  A. Walther,et al.  Experimental quantum-state tomography of a solid-state qubit , 2007, 0708.0764.

[84]  N. Gisin,et al.  Investigations of optical coherence properties in an erbium-doped silicate fiber for quantum state storage , 2006, quant-ph/0603192.

[85]  L. Rippe,et al.  Scalable designs for quantum computing with rare-earth-ion-doped crystals , 2006, quant-ph/0601141.

[86]  Stefan Kröll,et al.  Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles , 2005 .

[87]  J. Longdell,et al.  Dynamic decoherence control of a solid-state nuclear-quadrupole qubit. , 2004, Physical review letters.

[88]  P. Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2004, quant-ph/0408040.

[89]  Klaus Molmer,et al.  Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping , 2003, quant-ph/0305060.

[90]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[91]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[92]  A. Polman,et al.  Rapid thermal annealing of MeV erbium implanted LiNbO3 single crystals for optical doping , 1994 .

[93]  R. Macfarlane,et al.  Effects of disorder on optical and electron spin linewidths in Er 3+ ,Sc 3+ :Y 2 SiO 5 , 2017 .

[94]  A. Karimi,et al.  Master‟s thesis , 2011 .

[95]  Stefan Kröll,et al.  Quantum computer hardware based on rare-earth-ion-doped inorganic crystals , 2002 .