Overcoming the bandgap limitation on solar cell materials

The thermodynamic efficiency of a single junction solar cell is bounded by the Shockley-Queisser detailed balance limit at ∼30% [W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961)]. This maximal efficiency is considered achievable using a semiconductor within a restricted bandgap range of 1.1-1.5 eV. This work upends this assumption by demonstrating that the optimal material bandgap can be shifted to lower energies by placing selective reflectors around the solar cell. This technique opens new possibilities for lower bandgap materials to achieve the thermodynamic limit and to be effective in high efficiency solar cells.

[1]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[2]  Xiang Zhang,et al.  Solar energy enhancement using down-converting particles: A rigorous approach , 2011 .

[3]  R. T. Ross,et al.  Efficiency of quantum-utilizing solar energy converters in the presence of recombination losses , 1980 .

[4]  E. Burstein Anomalous Optical Absorption Limit in InSb , 1954 .

[5]  Carl R. Pidgeon,et al.  InSb1-xNx growth and devices , 2003 .

[6]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[7]  T. Ashley,et al.  Temperature dependence of the electron Landé g factor in InSb and GaAs , 2008 .

[8]  P. Altermatt,et al.  Specifying targets of future research in photovoltaic devices containing pyrite (FeS2) by numerical modelling , 2002 .

[9]  Oleg V. Sulima,et al.  Characterization and simulation of GaSb device-related properties , 2000 .

[10]  Carl R. Pidgeon,et al.  Auger recombination dynamics of InxGa1-xSb , 1999 .

[11]  Tom Markvart,et al.  The thermodynamics of optical étendue , 2008 .

[12]  R. Strandberg,et al.  Limiting efficiency of intermediate band solar cells with spectrally selective reflectors , 2010 .

[13]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[14]  N. Dimitrijević,et al.  Dynamic Burstein-Moss shift in semiconductor colloids , 1989 .

[15]  M. Green Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes , 1984, IEEE Transactions on Electron Devices.

[16]  Tom Markvart,et al.  Solar cell as a heat engine: energy–entropy analysis of photovoltaic conversion , 2008 .

[17]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[18]  Zongfu Yu,et al.  Fundamental limit of nanophotonic light trapping in solar cells , 2010, Proceedings of the National Academy of Sciences.

[19]  Antonio Luque,et al.  Physical limitations to photovoltaic energy conversion , 1990 .

[20]  W. Ruppel,et al.  Upper limit for the conversion of solar energy , 1980, IEEE Transactions on Electron Devices.

[21]  Tom Markvart,et al.  Beyond the Yablonovitch limit: trapping light by frequency shift , 2011 .

[22]  Antonio Martí,et al.  Absolute limiting efficiencies for photovoltaic energy conversion , 1994 .

[23]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[24]  R. A. SMITH,et al.  Physics of Semiconductors , 1960, Nature.

[25]  Sergio Brovelli,et al.  Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core-shell interface. , 2011, Nano letters.

[26]  Thomas Kirchartz,et al.  Directional selectivity and ultra‐light‐trapping in solar cells , 2008 .

[27]  J. Gordon,et al.  Is Auger recombination the ultimate performance limiter in concentrator solar cells , 2010 .

[28]  V. Badescu Spectrally and angularly selective photothermal and photovoltaic converters under one-sun illumination , 2005 .

[29]  T. Moss Theory of Intensity Dependence of Refractive Index , 1980 .

[30]  Martin A. Green,et al.  Third generation photovoltaics , 2002, 2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601).

[31]  Sadao Adachi,et al.  Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y , 1989 .

[32]  E. Rhoderick,et al.  Solid State Electronics , 1970 .

[33]  N. Holonyak,et al.  DIRECT OBSERVATION OF A DYNAMIC BURSTEIN SHIFT IN A GaAs:Ge PLATELET LASER , 1970 .

[34]  A Paul Alivisatos,et al.  Materials availability expands the opportunity for large-scale photovoltaics deployment. , 2009, Environmental science & technology.

[35]  Benedikt Bläsi,et al.  Directionally selective light trapping in a germanium solar cell. , 2011, Optics express.